
Algorithms for White-box Obfuscation

Using Randomized

Subcircuit Selection and Replacement

THESIS

Kenneth E. Norman, Major, USAF

AFIT/GCS/ENG/08-17

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCS/ENG/08-17

Algorithms for White-box Obfuscation

Using Randomized

Subcircuit Selection and Replacement

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Kenneth E. Norman, B.E.E., M.S.Eng.Mgt.

Major, USAF

27 March 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/08-17

Algorithms for White-box Obfuscation

Using Randomized

Subcircuit Selection and Replacement

Kenneth E. Norman, B.E.E., M.S.Eng.Mgt.

Major, USAF

Approved:

/signed/ 27 Feb 2008

Lt Col J. Todd McDonald, Ph.D. (Chairman) Date

/signed/ 27 Feb 2008

Dr. Yong C. Kim (Member) Date

/signed/ 27 Feb 2008

Lt Col Stuart H. Kurkowski, Ph.D. (Member) Date

AFIT/GCS/ENG/08-17

Abstract

Software protection remains an active research area with the goal of preventing

adversarial software exploitation such as reverse engineering, tampering, and piracy.

Heuristic obfuscation techniques lack strong theoretical underpinnings while current

theoretical research highlights the impossibility of creating general, efficient, and in-

formation theoretically secure obfuscators. In this research, we consider a bridge

between these two worlds by examining obfuscators based on the Random Program

Model (RPM). Such a model envisions the use of program encryption techniques

which change the black-box (semantic) and white-box (structural) representations of

underlying programs.

In this thesis we explore the possibilities for white-box transformation. Under an

RPM formulation, if an adversary cannot distinguish an original program from either

its obfuscated version (whose black-box behavior has been strategically altered) or

a randomly generated program of comparable size, then the white-box intent of the

original program has been sufficiently protected. One proposed method of creating

such random indistinguishability is by choosing (at random) a program from a size-

bounded set of all semantically equivalent possibilities.

Since full enumeration of reasonably sized programs is not possible, in this

work we focus on obfuscators which introduce random white-box structural variation

based on iterative selection and replacement. We design and develop an obfuscation

framework for programmatic logic expressed as combinatorial Boolean circuits and

compare six unique approaches for sub-circuit selection. We analyze the relative

behavior of random and guided-random sub-circuit selection algorithms while showing

their utility in producing random white-box structural variation.

iv

Acknowledgements

To my wife and son: Thank you for your love and support. My success is

equally yours, and for your sacrifices, I owe you more than I can ever repay. I love

you both very much.

Professionally, I owe a debt of gratitude to my thesis advisor, Lt Col Todd

McDonald, and my research partner, Capt Moses James. As an electrical engineer in

a computer science program, I know I taxed their patience with my many questions.

Thank you.

Kenneth E. Norman

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . x

I. Introduction . 1
1.1 Problem area . 1

1.1.1 Motivating scenario 1

1.1.2 Context . 2
1.2 Research objectives . 4

II. Literature Review . 5
2.1 What is obfuscation? . 5

2.1.1 Preliminary definitions 5

2.1.2 Classifications of obfuscation 5
2.1.3 Theoretical definitions 6

2.1.3.1 Virtual Black Box Obfuscation 7
2.1.3.2 Indistinguishability Obfuscation 8

2.1.3.3 Best-Possible Obfuscation 9
2.1.4 Practical applications 9

2.2 Shortfalls of current theoretical work 10
2.3 Random Program Security Model 11

2.3.1 Program encryption 12

2.3.2 Intent protection 14

III. Methodology . 15

3.1 Notation . 15
3.2 Assumptions . 15

3.2.1 Programs represented as circuits 15

3.2.1.1 Combinational circuits 16
3.2.1.2 Directed acyclic multi-graphs 18

3.2.2 Iterative randomization 21
3.2.3 Circuit library exists 21

3.3 Obfuscation toolkit . 23
3.3.1 CORGI: the circuit randomizer 23

vi

Page

3.3.1.1 Development environment 23

3.3.1.2 Subcircuit selection and replacement . . 24

3.3.2 CXL: the circuit library 25

3.4 Empirical Approach . 26

3.4.1 Key concepts 26

3.4.2 Properties of obfuscated circuits 28

3.4.3 White-box obfuscation algorithms 30

IV. Results . 32
4.1 Overview . 32
4.2 Limitations . 33

4.2.1 Smart strategies 33

4.2.2 Introduced cycles 34

4.3 Analysis of subcircuit selection algorithms 35

4.3.1 Common functions 36
4.3.2 RandomSingleGate 36

4.3.3 RandomTwoGates 38
4.3.4 RandomLevelTwoGates 45
4.3.5 FixedLevelTwoGates 47
4.3.6 LargestLevelTwoGates 49

4.3.7 OutputLevelTwoGates 50

4.4 Runtime performance analysis 52

V. Conclusions . 67
5.1 Contributions . 67
5.2 Future work . 68

Appendix A. CORGI software . 70

A.1 CORGI architecture . 70
A.1.1 Functionality 70

A.1.1.1 JGraphT 70

A.2 Non-selection algorithms 70

A.3 Selection algorithm behavior 74

A.4 Selection algorithm results 78

A.4.1 C17 with all algorithms 78

A.4.2 C880 with OutputLevelTwoGates 78

Bibliography . 84

Vita . 86

Index . Index-1

vii

List of Figures
Figure Page

1.1 Program Encryption . 3

2.1 The Random Program Model 12

2.2 RPM obfuscation . 13

2.3 Black box obfuscated program 13

3.1 The Random Program Model 17

3.2 ISCAS Benchmark Circuit C17 18

3.3 Graph examples . 19

3.4 Iterative randomization . 22

3.5 Circuit hierarchy example . 28

3.6 Example histogram . 29

4.1 Improper subcircuit selection creates cycles 35

4.2 Introduced control flow in ISCAS C17 42

4.3 Diffusion of replacements in ISCAS C17 43

4.4 How a replacement subcircuit creates a new control flow 44

4.5 Runtime data for R1G on C17 55

4.6 Runtime data for R1G on C880 56

4.7 Runtime data for R2G on C17 57

4.8 Runtime data for R2G on C880 58

4.9 Runtime data for RL2G on C17 59

4.10 Runtime data for RL2G on C880 60

4.11 Runtime data for FL2G on C17 61

4.12 Runtime data for FL2G on C880 62

4.13 Runtime data for LL2G on C17 63

4.14 Runtime data for LL2G on C880 64

4.15 Runtime data for OL2G on C17 65

viii

Figure Page

4.16 Runtime data for OL2G on C880 66

A.1 CORGI UML class diagram . 71

A.2 Behavior data for all six selection algorithms 75

A.3 Chart of behavior data: circuit height 76

A.4 Chart of behavior data: circuit width 77

A.5 Sample results of R1G and OL2G algorithms 79

A.6 Sample results of R2G and FL2G algorithms 80

A.7 Sample results of RL2G and LL2G algorithms 81

A.8 Sample result 1 of OL2G applied to C880 81

A.9 Sample result 2 of OL2G applied to C880 82

A.10 Sample result 3 of OL2G applied to C880 83

ix

List of Tables
Table Page

3.1 Notation for the Random Program Model 16

3.2 Features and benefits of JGraphT 24

3.3 Candidate circuit properties . 29

3.4 Candidate subcircuit selection algorithms 30

4.1 Summary of runtime data . 53

x

Algorithms for White-box Obfuscation

Using Randomized

Subcircuit Selection and Replacement

I. Introduction

Across the Department of Defense, it is increasingly difficult to find a weapon

systems which does not rely upon software to perform its intended function.

The United States Air Force in particular is reliant on software across every facet of its

mission: air, space, and cyberspace. The ubiquity of software-based systems, and the

interconnectedness of such systems, demands we protect them from our adversaries’

prying eyes. In many cases, physical security is sufficient to thwart anyone who

seeks to gain access to our systems. When physical security fails to protect our

critical software, we must turn to alternate means. One such alternative is software

obfuscation.

1.1 Problem area

Software obfuscation is not a new concept, but neither is it a well-defined dis-

cipline in practice. The concept of software obfuscation is in many ways the un-

raveling of sound development principles. The objective in software engineering is

to produce systems which are defect-free, modular, maintainable, and extensible. A

well-engineered system will function as efficiently as possible, and perform the job the

user expects, in the manner he expects it. The objective in software obfuscation is to

produce highly coupled, difficult-to-understand, complex systems which, nevertheless,

perform the job the user expects, in the manner he expects it (though perhaps with

less efficiency by comparison).

1.1.1 Motivating scenario. In early 2001, the world watched as the US

and China found themselves at odds after what became known as the Hainan Island

1

incident. In brief, a US EP-3 reconnaissance plane and a Chinese Shenyang J-8

collided, and the EP-3 was forced to make an emergency landing on Hainan Island

off the south coast of China. According to a 2 April 2001 UPI press release [11],

“[t]he EP-3 could not have landed in a better place for China or a worse
one for U.S. military intelligence. Hainan island is host to one of China’s
largest electronic signals intelligence complexes and is manned by experts
who can glean critical information on the aircraft’s capabilities if they gain
access to the Navy’s EP-3” . . . Pentagon sources said.

The crew was held hostage for 12 days before being released. The plane, how-

ever, remained on Hainan Island for a total of 94 days, during which time China had

unfettered access to the equipment on board. If the EP-3 crew was unable to entirely

destroy all information storage devices (and the software they contain) before they

landed, then the Chinese had ample opportunity to learn about US collection methods

and targets of interest during the time the plane was in their control. Even if their

examination would have taken more than 94 days, it would have been easy enough to

copy the code (from undamaged equipment) and analyze it after they returned the

aircraft to US custody.

1.1.2 Context. This research augments earlier work initiated by Lt Col

Todd McDonald for his doctorate degree. In his dissertation, McDonald described

software obfuscation as protecting program intent [12]. The concept of intent protec-

tion stands in contrast to traditional definitions of obfuscation, all of which require

that a program’s functionality remain unchanged (without regards to some acceptable

degradation of time and/or space efficiency). Instead, McDonald takes inspiration

from the field of cryptography and likens intent protection to data encryption. The

idea is to transform a program in two ways—structurally and functionally. If func-

tionality (that is, input/output behavior) must change, then it must also be possible

to recover the original behavior (see Figure 1.1). McDonald further requires that an

intent protected program be indistinguishable from any other program, selected ran-

2

Figure 1.1: Program encryption under the Random Program Model

domly, which has a similar number of inputs, outputs, and is of similar size. This he

calls the Random Program Model (RPM).

The difficult question is how to devise a random selection schema. Clearly, for

any but the most basic of programs, software can be written in almost limitless ways

to accomplish the same function. If the set is impossible (or at least infeasible) to

create, an alternate means of “selection” is required.

Rather than attempt to enumerate entire sets of programs, then select a re-

placement in toto, we consider an alternate approach of iterative randomization. This

process obfuscates a program by changing the structure of only a small portion of the

program per iteration, but many iterations produce a randomized program.

For this nascent research, we narrow our focus to combinational Boolean cir-

cuits. This simplifies the problem domain by avoiding non-terminating programs and

program state (memory). Additionally, circuits can be modeled using constructs from

the mathematical discipline of graph theory.

3

1.2 Research objectives

We seek to accomplish two objectives with this research.

1. Develop a software architecture for developing and testing random selection

schema for obfuscating a circuit’s structure.

2. Develop an initial set of selection algorithms and characterize their behavior

with regards to white-box obfuscation.

The first objective above is a means to an end. In other words, to develop

and analyze selection algorithms, we need an architecture which will import, export,

and manipulate combinational Boolean circuits. No complete application is available

to perform the operations we seek to employ, so we developed a software package

(CORGI1) to fill the void. Although CORGI is all new, it integrates an existing Java

library (JGraphT) to represent the circuits as directed acyclic graphs.

For the second objective, we devised candidate algorithms which demonstrate

the concept of random selection and replacement. The algorithms each produce an

obfuscated version of an original circuit. Each circuit produced in this way is a

randomly “selected,” semantically equivalent version of the original, with the selection

occurring as a sequence of steps rather than a single-step selection from a large set.

Although this research is based on a new obfuscation paradigm, the next chapter

explores the current theoretical understanding of obfuscation and how it relates to

our current work.

1CORGI stands for C ircuit Obfuscation via Randomization of Graphs I teratively, and is dis-
cussed in more detail in Section 3.3.1

4

II. Literature Review

Several key papers have been published which provide theoretical bases for why

obfuscation is both impossible and, indeed, possible. Practical applications of

these theories, however, do not appear in the literature. As such, one approach,

the Random Program Security Model, proposes that practical obfuscation is indeed

possible and that a program’s intent can be protected even if the adversary has access

to the obfuscated version of the program. The Random Program Security Model is

fundamentally an analog to data encryption, but applied to programs rather than

data.

2.1 What is obfuscation?

2.1.1 Preliminary definitions. Before delving into the finer details of ob-

fuscation, it is instructive to understand how the word obfuscation is used in several

contexts. In generic speech, to obfuscate means to “make obscure” or “confuse” [13].

As applies to computing, to obfuscate means “to alter code while preserving its

behavior but conceal its structure and intent” [19]. Alternately, obfuscation is “any

efficient semantic-preserving transformation of computer programs aimed at bringing

a program into such a form, which impedes the understanding of its algorithm and

data structures or prevents the extracting of some valuable information from the

plaintext of a program” [18]. These two definitions provide the context for our review

of current theory and techniques for program obfuscation.

2.1.2 Classifications of obfuscation. Program development and execution

involves several steps, and program obfuscation can be applied at one or more of these

steps. Fundamentally, there are three classifications of program obfuscation: layout,

data, and control [3]. Layout obfuscation involves such techniques as scrambling

identifier names and removing layout formatting. Both of these techniques operate

on the source code, and do nothing to alter control flow of the program.

5

Data obfuscation is also primarily focused on altering the source code. Tech-

niques include (a) storage and encoding transformations, which alter the way data

is encoded or manipulated (b) aggregation transformations, which operate on data

structures, and (c) ordering transformations, which change the order of variables and

methods (within classes) and parameters (within methods). To some extent, these

techniques can have an impact on control flow within a program, but it is not the

primary intent. Like layout obfuscation, many of the specific transformations do not

change control flow (although some introduce new control mechanisms).

The final classification is control obfuscation, and its techniques include (a) con-

trol aggregation transformations, which break up computations that logically belong

together or merge computations that do not, (b) control ordering transformations,

which randomize the order in which computations are carried out, and (c) control

computation transformations, which insert new (redundant or dead) code, or make

algorithmic changes to the source application. Control obfuscation techniques, as de-

scribed in [3], are not strictly limited to source code, which means it has more generic

applicability (e.g., assembly language and machine code).

Among the three broad categories described above, general program (circuit)

obfuscation must account for control flow. This becomes clear as we look at additional

definitions of obfuscation.

2.1.3 Theoretical definitions. The first formalized theoretical definition of

program (or circuit) obfuscation was introduced by Barak et al. in [1]. This was a

watershed publication because it formally proved that universal obfuscators do not

exist. It also had the effect of spawning alternate theoretically-based definitions of

obfuscation in several publications which followed. We will look at several of these

definitions here.

6

2.1.3.1 Virtual Black Box Obfuscation. “Informally, an obfuscator O
is an (efficient, probabilistic) compiler that takes as input a program P (or circuit C)1

and produces a new program O(P) that has the same functionality as P yet is un-

intelligible in some sense” [1]. In lay terms, virtual black box (VBB) obfuscation

can be thought of as some transformation to a program which completely hides all

information about the program except input/output (i.e., black box) behavior, even

though the obfuscated program is itself observable. In that sense, the obfuscated ver-

sion provides virtually equivalent information as could be obtained with only black

box access to the program.

Although informal, the definition above makes no distinction of what constitutes

a program. No mention is made of “source code,” “assembly language,” or “machine

code” anywhere in the paper (save one quote in a footnote). Thus, while there are

clear differences between the three levels of a program, their fundamental nature is

the same. Indeed, their equivalence is evidenced by the fact that programs can be

viewed as boolean (specifically, combinational) logic circuits, and the Barak paper

uses the terms program and circuit almost interchangeably. This is not to imply that

obfuscated source code will necessarily yield object code that is obfuscated to the

same degree (however measured). This remains an open question which, in part, will

be addressed by this thesis.

Barak et al. formally define a (circuit) obfuscator as having these three proper-

ties:

1. Functionality property: For every circuit C, O(C) describes a circuit that com-

putes the same function as C.

2. Polynomial slowdown property: There is a polynomial p such that for every

circuit C, |O(C)| ≤ p(|C|). This property may apply to size, run time, or both.

1Since this concept applies equally to programs and circuits, and since this thesis will specifically
explore obfuscation of circuits, we will limit further discussion to circuit obfuscation. Therefore,
substituting C for P does not alter the definition.

7

3. “Virtual black box (VBB)” property: For any probabilistic polynomialtime Tur-

ing machine (PPT) A, there is a PPT S and a negligible function α such that

for all circuits C,

|Pr[A(O(C)) = 1]− Pr[SC(1|C|) = 1]| ≤ α(|C|) (2.1)

The obfuscator O is efficient if it runs in polynomial time.

From this definition, Barak, et al. prove that no universal obfuscator exists.

The basis of their proof is to show that, for any given obfuscator, there exists a family

of circuits which cannot be obfuscated. “However, it does not mean that there is no

method of making circuits ‘unintelligible’ in some meaningful and precise sense” [1].

To be clear, the impossibility result still allows for a given obfuscator O to be able to

protect some (though not all) families of circuits C. From this, Barak et al. offer a

weaker notion of obfuscation: indistinguishability obfuscation.

2.1.3.2 Indistinguishability Obfuscation. An indistinguishability ob-

fuscator is defined in the same way as a circuit obfuscator, except that the “virtual

black box” property is replaced with the following:

• Indistinguishability property: For any PPT A, there is a negligible function α

such that for any two circuits C1, C2 which compute the same function and are

of the same size k,

|Pr[A(O(C1))]− Pr[A(O(C2))]| ≤ α(k) (2.2)

Observe that the indistinguishability property compares the obfuscations of two

different circuits, unlike the VBB property, which compares an obfuscated circuit to

a simulator which has only black box access to the original circuit. By weakening the

VBB definition in this way, it is provable that obfuscation (however inefficient) is not

impossible.

8

2.1.3.3 Best-Possible Obfuscation. Goldwasser and Rothblum define

an obfuscator as “a compiler that transforms any program (which we will view. . . as a

boolean circuit) into an obfuscated program (also a circuit) that has the same input-

output functionality as the original program, but is unintelligible” [6]. It is clear

that this is the same definition found in [1], but it is nevertheless included because of

the parenthetical comment that programs can be viewed as circuits. This concept is

central to the research presented herein.

2.1.4 Practical applications. Obfuscation software, of varying sophistica-

tion, is widely available from both commercial vendors and open source developers.

Among commercial products, there are several well-known titles. PreEmptive Solu-

tions [16] produces two popular tools: Dotfuscator (for .NET) and DashO (for Java).

Smardec [17], produces Allatori, a Java obfuscator. Yet another company, Semantic

Designs, Inc. [15] has a suite of tools collectively called Thicket™. It provides tools to

obfuscate several languages, including C, C++, C#, Java, JavaScript, Ada, and PHP.

There are, of course, other vendors which offer products that purport to obfuscate

software to some degree, but enumerating them all here is beyond the scope of this

thesis.

On the open source side, the number of projects is as plentiful as on the com-

mercial side. One in particular, ProGuard Java Optimizer and Obfuscator is one of

the most popular projects on SourceForge.net.2

It is not surprising that these companies and open source developers reveal lit-

tle about the inner workings of their obfuscation techniques, except to describe the

results of applying a particular approach (e.g., name obfuscation, flow obfuscation,

string encryption, etc.). Interestingly, however, Semantic Designs’ web site unequiv-

ocally states, “Warning: obfuscators do not stop reverse-engineering efforts by really

determined opponents.” This statement is an acknowledgment of the theoretical work

2From its home page, “SourceForge.net is the world’s largest Open Source software development
web site.” As of 16 Jan 2008, ProGuard was ranked 291 out of 166,996 projects listed.

9

of Barak et al. described above. Nevertheless, practical obfuscators are not in short

supply, despite this limitation, which begs the question: “Why not?”

2.2 Shortfalls of current theoretical work

To begin to answer the question of why practical software obfuscators are even

available, much less trusted, one must further ask, “what makes them useful despite

the impossibility results asserted—‘proved ’—by the theoreticians?” The answer is at

least two-fold.

First, commercial and open source obfuscation tools are not typically employed,

for the most part, to hide the purpose of the target software, but rather to hide the

manner in which that purpose is achieved. For example, Microsoft may choose to

obfuscate all or part of the source code for its spreadsheet program, Excel™. The ob-

fuscated version would not hide the fact that the application is a spreadsheet. Rather,

it would hide some portion of the code to prevent competitors from learning how part

of the code is implemented, thus protecting Microsoft’s competitive advantage in the

marketplace. In this way, the obfuscation would be useful, even if though it necessarily

fails the VBB paradigm of perfectly secure obfuscation.

A second (perhaps more profound) reason may be that the tools do not address

obfuscation from a theoretical perspective. In light of an absence in the literature that

correlates theoretical results to practical implementations, it is difficult to make this

claim definitively (i.e., “absence of proof is not proof of absence”). It is nonetheless

intriguing that developers do not relate the strength of their obfuscation schema to

results predicted by the theoretical models.

From a VBB perspective, no obfuscators of any ilk should be useful or benefi-

cial. Although the VBB standard is not achievable in a general, efficient, universal

sense, some amount of obfuscation, as pertains to some as-yet undefined metric of

obfuscation, may be desirable. This is certainly the case with existing obfuscators,

even if not explicitly stated or understood by the developers, because all such tools

10

both exist and fail the VBB test. Therefore, the VBB standard is not viable as a

measure of practical obfuscation.

The other two theoretical results mentioned before—indistinguishability obfus-

cation and best-possible obfuscation—are similar. They both relate obfuscation to

some property of the program, and use that to compare obfuscation results to each

other (whereas VBB relates obfuscation to a black box version of a program). This

distinction is subtle, but it opens the door to finding useful obfuscators even if they

fail VBB scrutiny. Unfortunately, the underpinning theory behind indistinguishability

obfuscation and best-possible obfuscation do not offer suggestions on what property

or properties of a program should be the basis of comparison when deciding if an

obfuscator yields indistinguishable results, or the best-possible level of obfuscation.

The research supporting this thesis was conducted to directly address what

properties of a program might (or might not) be useful measures of obfuscation,

and to provide a framework for empirically testing the efficacy of those properties.

In other words, we seek to produce a “tangible” correlation to the theoretical work

which has preceded this research. This objective is an outgrowth of the doctorate

research conducted by Lt Col Todd McDonald. In his dissertation, he suggests a new

paradigm of program obfuscation, the Random Program Security Model [12].

2.3 Random Program Security Model

Recall from [1] the theoretical benchmark definition of an obfuscator—the VBB

paradigm—requires that three properties hold: functionality, polynomial slowdown,

and the VBB property. Under the Random Program Security Model (or simply

Random Program Model, RPM), McDonald replaces two of the three properties,

functionality and VBB [12]. Only the polynomial slowdown property is retained.

For the functionality property, McDonald postulates instead that program ob-

fuscation should apply both black-box and white-box obfuscation techniques. The

principle is that neither approach on its own is sufficient to obfuscate a program.

11

Figure 2.1: The Random Program Model (Program domain)

When combined, however, they act synergistically to overcome the inherent weak-

nesses of each.

For the VBB property, McDonald reasons that if an obfuscated program is

indistinguishable from another program randomly-selected from the same family of

programs (based on inputs, outputs, and size of the program), then the intent of the

original program is protected.

The RPM is similar to, and derived from, data cryptography. RPM models

black-box obfuscation after data encryption, and white-box obfuscation is analogous

to comparing cryptographic data ciphers to random bit strings. Figure 2.1 graphically

depicts the RPM. The obfuscator function, O, uses both black-box and white-box

transforms, as shown in Figure 2.2. These are described below in Sections 2.3.1

and 2.3.2.

2.3.1 Program encryption. Figure 2.3 illustrates the concept of black box

obfuscation using program encryption. For an input x to program P , the result,

P (x) is the unobfuscated output of P . Intermediate result P (x) becomes the input

12

Figure 2.2: RPM obfuscation combines both black-box and white-
box transforms

Figure 2.3: A black box obfuscation P ′′ of program P . P and P ′′ are
not semantically equivalent because P ′′ includes a program, E, which
encrypts the output of P .

of another component, E, which encrypts P (x) based on some key k. The output

E(P (x), k) of E is the overall output of P ′′. Since P (x) 6= E(P (x), k) (i.e., P (x) 6=
P ′′(x)) for a given input x, program P ′′ is thus said to be a black-box obfuscated

version of P .

Program encryption might be sufficient to protect a program if an adversary

never obtains white-box access to the obfuscated program, P ′′. If the adversary did

have white-box access, the demarcation between P and E would be discernible, and

P would be revealed independent of E. Thus, RPM adds white-box protection to

program encryption to achieve overall protection of the program’s intent.

13

2.3.2 Intent protection. As previously stated, perfect, efficient, universal

VBB obfuscators do not exist. If an adversary has access to an obfuscated, seman-

tically equivalent program, the adversary will eventually be able to understand the

intent of the original program. McDonald theorizes that program encryption can be

augmented in such a way as to prevent an adversary from being able to isolate P

from E in an encrypted program P ′′. The goal is to hide the fact that there is a

semantics-altering component E. If this is possible, then even if the adversary is able

to (eventually) predict the output of P ′′, such output will be meaningless with respect

to P (x), and program intent will remain protected.

McDonald proposes that if P ′′ (which is not semantically equivalent to P) is

replaced with a randomly chosen—or produced—program P ′ (which is semantically

equivalent to P ′′), then P is intent protected if the following hold:

• P ′ is such that the adversary cannot distinguish between the functional program

P and the composite encryption program E

• P ′ is indistinguishable from a random program selected from the set of all pro-

grams the same size as P ′

14

III. Methodology

The Random Program Model posits that an intent-protected program is indistin-

guishable from any other program with the same number of inputs and outputs,

and of comparable size. This thesis specifically considers the white-box obfuscation

component of the RPM. In this initial research, a program is modeled as a combi-

national boolean circuit. The circuit is white-box obfuscated by iteratively replacing

random subcircuits with randomly-chosen, semantically-equivalent replacement sub-

circuits. Several algorithms are considered for selecting the subcircuits, and as well

as candidate metrics with which to quantify the level of obfuscation achieved.

3.1 Notation

Since this research follows earlier work conducted by Lt Col Todd McDonald,

we use his notation for the sake of consistency. Table 3.1 provides the notation used

in the discussion which follows.

3.2 Assumptions

The current experimental environment relies on some simplifying assumptions,

which are discussed here.

3.2.1 Programs represented as circuits. Software functionality, at its most

fundamental level, can be represented as a sequence of Boolean expressions. For typ-

ical programs, which include loops (for, while, etc.), sequential boolean circuits map

most directly to the program structure. In general, sequential (cyclic, in graph theory

parlance) circuits can be converted to combinational (acyclic) circuits. Edwards [4]

offers an algorithm which performs this transformation, but warns it is inefficient for

anything but trivially small circuits (his algorithm ran for 51 seconds when oper-

ating on a 281-gate circuit). Despite potential intractability when converting large

sequential circuits, we choose combinational logic over sequential logic because of its

comparative simplicity.

15

Table 3.1: Notation used in describing the Random Program Model

Variable Meaning

C A combinational Boolean circuit

C ′
i Original circuit C after i iterations of randomization

C ′, C ′
n Original circuit C after n-iteration randomization is finished

Ω circuit basis. Ω is a set of Boolean functions such that
Ω ⊆ {AND, NAND, OR, NOR, XOR, XNOR, NOT}

CX-Y -S-Ω the class of a circuit, indicating inputs (X), outputs (Y),
size (S = maximum number of gates), and basis (Ω)

δ, δX-Y -S-Ω circuit family, i.e., the set containing all circuits CX-Y -S-Ω

δC family of circuits semantically equivalent to C (δC ⊂ δ)

The Random Program Model applies not only to the program domain, but to

the circuit domain as well. Figure 2.1 is given again (with only a notational change)

in Figure 3.1 to show the parallel between the two.

3.2.1.1 Combinational circuits. Combinational circuits have no state,

whereas sequential circuits are temporal, which is to say they have memory and feed-

back loops (cycles). Since sequential circuits can be decomposed into combinational

components, it is sufficient at the outset of this research to forgo the former in favor

of the latter. As an aside, combinational circuits sidestep the issue of non-terminating

programs–another complication of sequential circuits.

Our decision to use combinational circuits is supported by [9] which points

out in Chapter IV that a very simple grammar is all that is needed to compute

everything that can be computed by large languages like C and Java. In particular,

the grammar, in Backus Naur form, is shown in Equation 3.1 where B represents

any Boolean expression and E represents any integer expression. It is because of this

16

Figure 3.1: The Random Program Model (Circuit domain)

underlying simplicity that any software can be mapped to combinational logic form.

B ::= true|false|(!B)|(B&B)|(B ‖ B)|(E < E) (3.1)

An obvious benefit of choosing combinational logic is that it is easy to un-

derstand. As demonstrated in Equation 3.1 above, only three logic functions are

necessary: NOT (!), AND (&), and OR (‖). There are other commonly used logic

functions (namely NAND, NOR, XOR, and XNOR), but these can be represented

using various combinations of NOT, AND, and OR.

Combinational logic circuits are used across a broad spectrum of applications,

within both the hardware and software domains. At the 1985 International Sym-

posium of Circuits and Systems (ISCAS), the IEEE introduced a set of benchmark

circuits, which are collectively referred to as ISCAS-85 benchmark circuits. [8] They

are particularly useful to our purpose, even though they were initially targeted at the

hardware community. A list of these circuits can be found at [2]. The smallest of

these circuits, C17, is shown in Figure 3.2.

17

Figure 3.2: ISCAS Benchmark Circuit C17

3.2.1.2 Directed acyclic multi-graphs. In order to manipulate circuits,

they must be in a format suitable for that purpose. For this research, the discipline of

graph theory provides a suitable application domain. Namely, we represent circuits

as directed acyclic multi-graphs. We turn to Gross and Yellen [7] for a brief

refresher on graph theory terminology to help describe the rationale for choosing

graphs to represent circuits (reference Figure 3.3).

graph: A graph G = (V, E) is a mathematical structure consisting of two finite sets

V and E. The elements of V are called vertices (or nodes), and the elements of

E are called edges. Each edge has a set of one or two vertices associated to it,

which are called endpoints. [Example: All graphs in Figure 3.3.]

The authors correctly allow for edges with only one endpoint, which “is an edge that

joins a single endpoint to itself.” However, such a construct in a circuit would make it

sequential, not combinational. For our purposes, we only consider edges with exactly

two distinct vertices. See the definition for cycle below.

directed edge: A directed edge is an edge, one of whose endpoints is designated as

the tail, and whose other endpoint is designated as the head. An edge is said

to be directed from its tail to its head.

directed graph: A directed graph (or digraph) is a graph each of whose edges is

directed. [Example: Figures 3.3(b), (d), and (f).]

18

Figure 3.3: Example graphs.
(a) An undirected graph with no cycles.
(b) A directed graph with no cycles.
(c) An undirected graph with one cycle (1− 2− 3− 4− 1 and 1− 4−
3− 2− 1).
(d) A directed graph with one cycle (1 → 2 → 3 → 4 → 1 only).
(e) An undirected multi-graph with one cycle.
(f) A directed acyclic multi-graph.

19

We must limit the graphs we use to directed graphs because in a combinational

circuit, a connection between gates is always from the output of one gate to an input

of another gate.

cycle: A cycle is a nontrivial closed path.1

acyclic graph: An acyclic graph is a graph that has no cycles. [Example: Fig-

ures 3.3(a), (b), and (f).]

Combinational circuits do not have any feedback loops or memory, as do sequential

circuits. Therefore, only an acyclic graph can represent a combinational circuit.

multi-edge: A multi-edge is a collection of two or more edges having identical end-

points. The edge multiplicity is the number of edges within the multi-edge.

multi-graph: A multi-graph is a graph that may contain multi-edges. [Example:

Figures 3.3(e) and (f).]

In a combinational circuit, it is permissible for the output of one gate to be connected

to more than one input of another single gate. The analogous construct in graph

theory is a multi-graph.

directed acyclic graph: A directed acyclic graph (DAG) is a graph that is at the

same time a directed graph and an acyclic graph. It may or may not be a

multi-graph. [Example: Figures 3.3(b) and (f).]

For our purposes, we implicitly accept DAGs as also being multi-graphs. In other

words, DAG and directed acyclic multi-graph carry the same meaning, thus Fig-

ures 3.3(b) and 3.3(f) are both DAGs.

1A path does not repeat any vertex (except possibly the initial/final vertex) or edge. Nontrivial
means the path includes more than one vertex. Closed means the initial vertex is the same as the
final vertex.

20

3.2.2 Iterative randomization. The RPM requires that an intent-protected

circuit, C ′, be indistinguishable from a randomly selected circuit, CR. An interesting

aspect of the RPM is that the comparison itself is not influenced by the choice of orig-

inal circuit, C. Consequently, if the obfuscator O does not encrypt (i.e., semantically

transform) a circuit, the indistinguishability comparison can still be performed. This

fact allows us to segregate the white-box component of O from its black-box compo-

nent as we explore randomization methods for white-box obfuscation of circuits.

To perform white-box obfuscation, we consider the process of subcircuit se-

lection and replacement . Two reasons drive us to this choice. First, to randomly

select a white-box replacement of C would require enumeration of all circuits in δC .

As circuit size increases, δC becomes prohibitively large, and the obfuscator suffers

greater-than-polynomial slowdown. Second, the separate steps of subcircuit selection

and subcircuit replacement offer opportunities to inject randomness into the white-

box obfuscation process.

Section 3.4.3 describes selection and replacement in greater detail, but we in-

troduce here the basic of the concept (reference Figure 3.4). Given a circuit C which

is to be white-box obfuscated, select a subcircuit, Csub. Retrieve a randomly chosen

circuit Crep from a library of circuits which contains a set of all circuits semanti-

cally equivalent to Csub (the assumption that such a library exists will be discussed

in Section 3.2.3). Finally, remove Csub from C and insert Crep in its place. As long

as Csub and Crep are semantically equivalent (and the order of inputs and outputs is

preserved), then semantic equivalence exists for C, all C ′
i, and C ′

n.

3.2.3 Circuit library exists. A library of replacement circuits must exist

in order for the process of iterative randomization to be possible. However, in Sec-

tion 3.2.2 we said that enumerating all possible replacements for C would violate the

polynomial slowdown condition of RPM. We overcome this apparent contradiction

21

(a)

(b)

Figure 3.4: Two representations of iterative white-box randomiza-
tion.
(a) White-box obfuscation of circuit C by iteratively replacing ran-
domly selected subcircuits (Csub) with a semantically equivalent sub-
circuit (Crep) chosen randomly from a circuit library. C is the unobfus-
cated circuit, C ′

i is C after the ith iteration of replacement, and C ′
n is

C after an n-iteration obfuscation is complete.
(b) Depicts the sequential iterations of subcircuit selection and replace-
ment.

22

by developing2 a library whose contents are limited to only small circuits, typically

on the order of 5 or fewer gates. In this way, all semantically equivalent circuits in

a particular family (i.e., all C ∈ δC) can be enumerated. Therefore, in the iterative

replacement process, a given Crep can truly be selected from among all size-bounded

circuits semantically equivalent to Csub.

3.3 Obfuscation toolkit

As this research is empirically based, a software tool was developed to perform

the white-box circuit obfuscation portion of the RPM. Although the RPM calls for

both black-box (program encryption) and white-box (randomization) techniques, they

are performed independently from one another. This allows us to develop software

which only performs the white-box function. The tool has two major components,

CORGI and CXL.

3.3.1 CORGI: the circuit randomizer. CORGI, which stands for C ircuit

Obfuscation via Randomization of Graphs I teratively, was developed to empirically

analyze the RPM. Its development was a major benefit of this research. The inner

workings of the software are described in greater detail in Appendix A. Here, we

briefly discuss the main features of CORGI.

3.3.1.1 Development environment. CORGI is coded entirely in Java.

Several factors influenced this choice. First, there is a strong emphasis on object-

oriented design (OOD) at the Air Force Institute of Technology (AFIT), and Java

is the de facto language of choice for the academic environment. Second, given the

nature of the problem domain (i.e., circuits), OOD is a logical design choice. The

third factor is based on our choice of application domain (i.e., to represent circuits as

graphs), which allowed us to incorporate JGraphT into the development.

2The circuit library used in this research is a product of concurrent research conducted by Capt
Moses James. His research focuses on circuit randomization as a set selection problem.

23

Table 3.2: The most notable features and benefits JGraphT con-
tributed to the development of CORGI.

Feature Benefit to CORGI development

Graph package Model CORGI circuits as graphs. In particular,
JGraphT’s graph package included classes for all the
types of graphs described in Section 3.2.1.2.

Subgraph class Manipulate subgraphs without modifying the base
graph. This is a critical component of the subcircuit
selection and replacement process.

Exporter classes Export circuits to standard formats used by vari-
ous graph software packages (e.g., yGraph, GraphVis,
prefuse, etc.). Allows user to render circuits visually.

Algorithms package Contains classes for standard algorithms used in
graph theory. In particular, the CycleDetector class
is a critical part of CORGI because it enforces the
acyclic nature of DAGs.

JGraphT is an open source Java graph library [14]. Its free availability as an

open source project shortened the time to develop CORGI by at least several weeks–

possibly much more. JGraphT provides the means to easily generate graphs and

apply to them many of the common graph theory techniques. It is the crux of what

makes CORGI work. JGraphT not only provides the ability to model the underlying

graph of a circuit, it also has methods and services which make circuit manipulation

and analysis possible. Table 3.2 shows the key features and benefits of JGraphT.

Despite the graph basis for circuit manipulation—as implemented by way of the

JGraphT library—CORGI completely elides from the user any references to graphs or

graph behavior. Thus, CORGI is effectively a translation between the two domains.

3.3.1.2 Subcircuit selection and replacement. Subcircuit selection and

replacement is the principle function CORGI performs. From the user perspective, it

is a single action, but as already described, this function is iterative. We describe in

more detail here the mechanics of how CORGI carries out one iteration of the process

(ref. Figure 3.1).

24

CORGI does not actually select subcircuits. Instead, it selects a subset of the

circuit’s gates based on a selection strategy chosen by the user.3 This subset of the

circuit’s gates corresponds to a subset of vertices in the underlying graph, by which

a vertex-induced subgraph (or simply subgraph) is derived. CORGI then copies the

subgraph (leaving the base graph unchanged) and uses it to construct a separate

subcircuit representative of the gates selected.

Next, CORGI uses the new subcircuit’s truth table, along with other user inputs,

to request a replacement from the circuit library (CXL). CXL selects a random,

semantically equivalent, subcircuit replacement (i.e., its truth table is the same). The

original subcircuit is removed from the circuit, and the replacement subcircuit is

inserted in its place.

3.3.2 CXL: the circuit library. CXL is a component of CORGI which

contains a library of circuits. In a sense, CXL is really a library of sets of circuits.

Each set is a circuit family δC where C is characterized by a particular class CX-Y -S-Ω

(ref. Table 3.1).

Because of the various equivalence relationships in Boolean logic, |δC | rapidly

increases exponentially with even small increases in S and/or |Ω|. For practical rea-

sons, we choose S ≤ 3, although we do allow Ω ⊆ {AND, NAND, OR, NOR, XOR,

XNOR, NOT} (i.e., |Ω| ≤ 7).

From a user perspective, CXL is not a separate component from CORGI. Indeed,

CXL is accessed by CORGI via an interface, which is called from within the iterative

function of subcircuit selection and replacement. The user provides parameters which

are used by the interface, but the call itself is not controlled by the user. Because of

this, we consider CXL to be an integrated component of CORGI, and this perspective

is implicit in any further references to CORGI unless otherwise stated.

See [10] for more detailed information on the behavior of CXL.

3The initial implementation of CORGI limits selection to only one or two gates, primarily for
performance reasons, but also due to limitations imposed by the circuit library.

25

3.4 Empirical Approach

This research is predicated on the notion that we need empirical data to be able

to demonstrate whether practical obfuscation might be possible in light of theoretic

impossibility results. Perhaps there exist imperfect obfuscators that protect circuits

to a useful, measurable degree. Inherent in the preceding conjecture are two questions:

• What properties of circuits are indicators of useful, measurable circuit

protection?

• What methods of obfuscation produce such properties in circuits?

Since our standard of useful is the RPM, we are really asking what properties

of circuits are indistinguishable between an obfuscated circuit, C ′, and a randomly

selected (generated) circuit, CR. If we know which properties relate to indistinguisha-

bility under the RPM, our intuition is we should be able to easily find algorithms which

produce those properties in C ′. On the other hand, if we know that a particular ob-

fuscator will produce a C ′ which meets the RPM definition of indistinguishability, we

can deduce which properties are indicators of well-obfuscated circuits.

In reality, we do not know a priori the answer to either of the two questions

above. Our approach, therefore, is to work the problem incrementally to see where

the results converge. We briefly consider several candidate properties with which

to measure circuit obfuscation under RPM. Then we propose several algorithms for

performing subcircuit selection as part of the iterative randomization process. These

algorithms are applied to a circuit, C, and then the resulting white-box obfuscated

circuit, C ′, is examined for their effect on obfuscation under RPM. Next, we define

some key concepts used in the discussion which follows.

3.4.1 Key concepts. First, a circuit property, as we shall use the term, is

a descriptor of a single circuit. This is an important distinction since the white-

box circuit obfuscation process we employ is iterative (ref. Figure 3.4), creating

many intermediate circuits Ci
′ before finishing with Cn

′ (Cn
′ is the same as C ′ in

26

Figure 3.1). These intermediate circuits provide us the means to measure how a given

property changes throughout the iterative process, but each Ci
′ will have its own set

of properties independent of any other circuit.

Second, since combinational circuits are modeled as DAGs, we look initially to

graph theory for properties of graphs which may be candidate measures of circuit

obfuscation. This choice leads us to also use graph terminology to describe some of

the properties. When this occurs, equivalent terminology—if it exists—is included

parenthetically.

Third, our use of the term path is limited to only those paths which begin at

a circuit input and end at a circuit output. The intention is to describe control flow

through a circuit.

Fourth, DAGs are by their nature hierarchical, thus combinational Boolean

circuits are, too. A circuit’s gate hierarchy is dictated by the predecessor or successor

relationships of the various gates in the circuit. By our convention, if a gate precedes

another gate in some path through the circuit, then the preceding gate is at a higher

level. Equivalently, if a gate succeeds another gate along some path through the

circuit, then the succeeding gate is at a lower level. It is possible that a particular

gate could be assigned to any one of several levels, but our convention is to assign the

gate to the lowest level that preserves the hierarchy of the circuit.

Figure 3.5 demonstrates the concept of gate hierarchy. Note that gate B is at

level 2, not level 1, as is gate C. This is because the longest path from inputs of gate B

to the output of gate D is length 2. Similarly, gate A could have been assigned to

a new level 3, but the addition of the extra level breaks the convention that gates

should be assigned to the lowest level that preserves the hierarchy of the circuit.

Finally, certain proposed circuit properties are frequency distributions, repre-

sented graphically as histograms. An example might be the number of unique paths

that transit each gate. In Figure 3.5, for example, gate A has two unique paths:

27

Figure 3.5: A simple example of circuit hierarchy.
(a) A simple circuit (X = 4, Y = 1, S = 4, Ω = {NAND}) without
hierarchical levels.
(b) The same circuit with lowest hierarchy level assigned to each gate.

i0-A-C-D and i1-A-C-D. Similarly, gate B has two, gate C has four, and gate D has

six. The associated histogram is shown in Figure 3.6.

3.4.2 Properties of obfuscated circuits. A property of a circuit may be a

single value (e.g., average path length), or a distribution of values (see Figure 3.6). In

case of the latter, the property will be identified as such. We propose several circuit

properties as candidate measures of circuit obfuscation, without consideration of the

efficacy of each property (see Table 3.3.)

To be clear, the properties listed in Table 3.3 serve two purposes. First, they are

objects of the proposed algorithms (Section 3.4.3 below). Second, they are collectively

a leaping-off point for future research on which circuit properties are strong indicators

of effective obfuscation.

28

Figure 3.6: A simple example of a histogram of a circuit property.
The chart represents the frequency of occurrence of gates having a par-
ticular number of unique paths passing through them. In this example
circuit, two gates have two unique paths (gates A and B), one gate has
four unique paths (gate C), and one gate has six unique paths (gate D).

Table 3.3: A set of candidate circuit properties for measuring circuit
obfuscation.

Circuit-level Gate-level

Number of vertices at each hierarchical
level [distribution]

Number of paths through each gate
[distribution]

Set of input/output pairs as deter-
mined by paths through the circuit

Number of unique input/output pairs
represented by paths through each gate
[distribution]

Number of vertex (gate) types (|Ω|) Number of successors of each gate (i.e.,
gate fanout) [distribution]

Number of each vertex type (e.g., AND,
OR, etc.) [distribution]

Number of predecessors of each gate
(i.e., gate fan-in) [distribution]

29

Table 3.4: A set of candidate subcircuit selection algorithms used to
iteratively white-box obfuscate a circuit. Algorithm names are derived
from the file name of the Java class which implements the algorithm in
CORGI.

Selection Algorithm Description

RandomSingleGate Selects a single gate at random

RandomTwoGates Selects two gates at random

RandomLevelTwoGates Selects a hierarchical level at random, and limits re-
placement to two gates selected at random from that
level (±1 level)

FixedLevelTwoGates Same as RandomLevelTwoGates except the hierarchi-
cal level is specified

LargestLevelTwoGates Same as FixedLevelTwoGates except the hierarchical
level is the one containing the most gates

OutputLevelTwoGates Same as FixedLevelTwoGates except the hierarchical
level is 0 (level 0 contains all the output gates)

3.4.3 White-box obfuscation algorithms. CORGI was designed to use mul-

tiple, interchangeable subcircuit selection algorithms. Recall that under the RPM,

an obfuscated circuit C ′, which is semantically equivalent to circuit C, is indistin-

guishable from a random circuit CR. We would like to be able to select C ′ from a

completely enumerated δC′ , but for large |C|, the size of δC′ is prohibitively large to

enumerate all circuits in the set. This limitation forces us to choose another method of

random “selection” of C ′: iterative randomized subcircuit selection and replacement.

The process of obfuscating a large circuit by iteratively randomizing small sub-

circuits provides opportunities and introduces challenges as compared to direct selec-

tion from δC′ . An advantage of the process is that a subcircuit selection algorithm can

be chosen such that it optimizes a particular obfuscation metric. A disadvantage, due

to the fact that the process is a metaheuristic, may be that a particular sequence of

iterations will converge on a final C ′ with a suboptimal value for the target property.

30

Table 3.4 lists a candidate set of randomization algorithms developed for this

research with a brief description of each. In Chapter IV, we analyze these algorithms

and how they were derived.

31

IV. Results

CORGI is an architecture for obfuscating combinational Boolean circuits via iter-

ative subcircuit selection and replacement. Six strategies for subcircuit selection

are implemented in CORGI as modular algorithms. When executed, these algorithms

transform a circuit C into a randomized (i.e., white-box obfuscated) but semantically

equal circuit C ′. The nature of the transformation is different for each algorithm.

Also, the design of certain CORGI components degrades CORGI performance (run-

time) when some selection algorithms are employed.

4.1 Overview

To perform white-box obfuscation under the RPM on circuit C, we would ideally

like to enumerate all circuits in δC , then select one at random as the semantically

equivalent replacement circuit C ′. Such enumeration is infeasible for large circuits,

which means a replacement circuit cannot be directly selected at random. Instead, it

must be built, but still yield a random C ′ ∈ δC . The process of iterative subcircuit

selection and replacement described in Section 3.2.2 provides two ways for introducing

randomness into the process.

1. Random selection: Select a subcircuit Csub ⊂ C at random.

2. Random replacement : Select a replacement circuit Crep ∈ δCrep at random.

There may also be some intermediate circuit C ′
i for which non-random selection

and replacement are preferred. Here, also, there are two such smart choices.

1. Smart selection: Only select subcircuits which have a particular property. If

the subset of allowable selections contains more than one subcircuit, then one

may be selected at random or based on another property.

2. Smart replacement : Similar to smart selection, only select replacement circuits

from the library which have a particular property. If the subset of allowable se-

lections contains more than one subcircuit, then one may be selected at random

or based on another property.

32

4.2 Limitations

Our research exposed certain limitations on the development of subcircuit se-

lection and replacement algorithms. Smart strategies often impinged upon temporal

or spatial efficiency, and the problem domain (i.e., combinational Boolean circuits)

reduced the randomness of random selection strategies as we seek to avoid creating

sequential circuits.

4.2.1 Smart strategies. There are multiple ways to make smart subcircuit

selections. Some examples include choosing only subcircuits with a particular input

size (Xsub), output size (Ysub), circuit size (Ssub), basis (Ωsub), and/or truth table.

Selection can also be made based on particular subsets of the circuit’s gates. For

example, select only subcircuits which have gates in a particular hierarchical level in

the circuit. Other smart selection strategies require searching the underlying graph

for isomorphic subgraphs, which is an NP-complete problem [5]. These can all pose

intractability problems for our iterative randomization process when we have large

circuit sizes, which limits the efficiency of the search algorithm.

Consider a smart selection strategy which is based on subgraph isomorphism.

Since the search is NP-complete, and the search space can be quite large (circuits

with thousands, perhaps millions of gates), the strategy becomes too computationally

intensive to be efficient, as required by the RPM.

Two of the six algorithms (RandomSingleGate and RandomTwoGates) use a

purely random selection strategy which are discussed in Sections 4.3.2 and 4.3.3.

The other four algorithms (RandomLevelTwoGates, FixedLevelTwoGates,

LargestLevelTwoGates, and OutputLevelTwoGates) use a blend of smart and ran-

dom selection, as is described in Sections 4.3.4–4.3.7. None of the latter four algo-

rithms use NP-complete selection strategies.

As for smart replacement, CXL currently has no means to employ such a strat-

egy. The problem is more a limit on space than on time. Specifically, if all replacement

circuits are stored with sufficient metadata, then finding a particular replacement is

33

basically a simple lookup in a database. However, as the size bound of candidate

replacement circuits increases, the size of the library increases exponentially, thus

limiting the set from which replacements can be selected.

4.2.2 Introduced cycles. The choice of combinational Boolean circuits places

a particular limitation on which subcircuits may be selected for replacement, as stated

in Axiom 1.

Axiom 1. In order to maintain the combinational structure of circuit C, the set of

gates G(Csub) in a selected subcircuit Csub must not contain any pair of gates (Gi, Gj)

such that (WLOG):

(a) Gi precedes Gj along some directed path in C, and

(b) the longest directed Gi-Gj path in C is ≥ 2.

The results of improperly selecting Csub is shown in Figure 4.1. Figure 4.1(a)

shows a 4-input, 1-output, 4-gate circuit. In Figure 4.1(b), a 3-input, 2-output, 2-

gate subcircuit Csub is selected for replacement. However, Csub contains a pair of

gates, B and D, which violate Axiom 1. Figure 4.1(c) shows that a cycle is created

if Csub is replaced with any replacement circuit Crep. The problem occurs because

gate C receives an output from Csub but also provides an input to Csub, thus creating

a cycle. If Csub is improperly selected, there exists no Crep such that a cycle is not

created.

As a result of this limitation, the manner of subcircuit selection in CORGI

requires a sequential selection of gates for those algorithms which select multi-gate

subcircuits. There are differences in how this is performed for each algorithm, which

are discussed below. The important point here is that, once the set of gates is selected,

the subcircuit is defined (induced) by the set of selected gates, as well as all connections

(“wires”) leading into or out of those gates. It is not necessary that selected gates be

connected directly to each other in C.

34

(a) (b) (c)

Figure 4.1: An example of an improper subcircuit selection and how
it will create a cycle after replacement.
(a) A circuit before subcircuit selection.
(b) Subcircuit Csub is selected. It is not a valid selection since gate B
is a predecessor of gate D and the longest path from B to D is ≥ 2.
(c) A cycle is created after replacing an improperly selected subcircuit,
regardless of what replacement Crep is used.

4.3 Analysis of subcircuit selection algorithms

For this research, six subcircuit selection algorithms were developed. All algo-

rithms adhere to a standard selection interface in CORGI, which does not actually

select a subcircuit Csub directly from a circuit C ′
i. Instead, the interface requires each

algorithm to return a set of gates G. CORGI then uses G, together with JGraphT’s

DirectedSubgraph class to create the subcircuit Csub induced by the selected gates in

set G. Thus, each algorithm returns a set of gates, not a subcircuit. The sections that

follow describe the manner of selection and the “behavior” each algorithm exhibits.

The development of these algorithms was itself an iterative process. As each new

algorithm was developed and tested, the results would suggest alternate strategies for

selection. Therefore, the algorithms are presented below in roughly the same order in

which they were developed.

35

4.3.1 Common functions. The overall process of randomization is also

presented in Appendix A (Algorithm 7). For the sake of brevity here, we defer to

Appendix A, Section A.2 for the details of two functions used by the six selection

algorithms discussed below: SelectRandomGate (Algorithm 8) and RejectGates (Al-

gorithm 9). It is sufficient to know that SelectRandomGate randomly selects a gate

from a set of gates, and RejectGates populates a set of gates which should not be

part of the input to SelectRandomGate.

A third function, EstablishGateHierarchy, is used only by the so-called level

algorithms (those for which selection is based on a circuit’s hierarchical level—all

have “Level” in their name). The details of EstablishGateHierarchy are presented

in Appendix A (Algorithm 10), but its basic functionality is to assign each gate to

the lowest allowable level in the circuit’s hierarchy. The details of why this function

is required will be presented in Section 4.3.4, where we introduce the first of the level

algorithms, RandomLevelTwoGates.

4.3.2 RandomSingleGate. RandomSingleGate was the first selection algo-

rithm developed for CORGI. As the name implies, all subcircuit selections Csub are

of the class CXsub-1-1-Ωsub
where

Ωsub ⊂ {AND, NAND, OR, NOR, XOR, XNOR}
Xsub ≥ 2

Ysub = Ssub = |Ωsub| = 1

Since all Csub contain only one gate, any gate can be selected from C ′
i and

replaced without creating cycles in C ′
i+1 (as long as C ′

i is combinational). The selection

procedure is simple, as shown in Algorithm 1.

RandomSingleGate was developed initially as a simple algorithm by which

CORGI functionality could be tested. The function of removing a subcircuit from

a circuit, then replacing it with a different subcircuit is a non-trivial activity. Se-

36

Algorithm 1 RandomSingleGate(C ′
i)

1: Gsub ← ∅ {set of gates (1 in this case) to induce Csub}
2: G(C ′

i) ← set of all gates in C ′
i

3: gk ← call SelectRandomGate(G(C ′
i))

4: Gsub ← Gsub ∪ {gk}
5: return Gsub

lecting a single-gate subcircuit for replacement, while simple to do, provides multiple

dimensions by which to test the process of iterative randomization. When the sub-

circuit is replaced, gate properties such as type (NAND, NOR, etc.), fan-in (number

of adjacent predecessors), fanout (number of adjacent successors), and whether the

selected gate is a circuit output, must all be accounted for.

RandomSingleGate is a purely random (as opposed to smart) selection process.

No knowledge of the target circuit is needed other than the set of gates in the circuit.

The iterative process cannot be guided in any way.

There are three results produced by RandomSingleGate. First, no new external

control flows are introduced in the circuit; second, the size S of C ′
i+1 is never smaller

than C ′
i; and third, the circuit becomes very “tall” (` ∝ n, where ` = number of

hierarchical levels, and n = number of replacement iterations).

The first result is contingent on how we use the term control flow. If we have

access to the structure of a circuit, then every unique path through a circuit is a control

flow. If, however, we only have black-box access to a circuit, then no distinction can be

made between unique paths which share a common source (input) and sink (output).

We will refer to the former as internal control flow and the latter as external control

flow. RandomSingleGate will never introduce new external control flows because all

subcircuit inputs connect to a single subcircuit output. However, RandomSingleGate

will always introduce new internal control flows. The only way RandomSingleGate

does not produce new internal control flows is the trivial case where the selected single-

gate subcircuit is replaced with itself. All other semantically equivalent replacements

37

have more than one gate, with connections between them; thus new internal control

flows are always introduced.

The second result is a function of the replacement subcircuits Crep returned by

CXL. In order for a replacement Crep of a single gate subcircuit Csub to change C ′
i,

Crep must have more than one gate. The reason for this is there is no non-trivial

single-gate equivalence between any pair of gates (gi, gj) in Ω = {AND, NAND, OR,

NOR, XOR, XNOR}.

The third result is a natural consequence of the first two. A subcircuit Csub

comprised of a single Boolean logic gate has only one hierarchical level (` = 1). All

nontrivial replacements Crep of Csub have at least two gates. If Crep has n gates, then

it can have 1 ≤ ` ≤ n hierarchical levels. If ` ≥ 2, then C ′
i+1 could “grow”—relative

to C ′
i—by as much as ` − 1 levels (although it may not grow at all). The rate of

growth over many iterations is a function of which gates are selected and the average

number of levels in each Crep selected from CXL.

Reference Figure A.5(b) for a sample result of applying this algorithm to IS-

CAS benchmark circuit C17. As we see from the data presented in Section A.3,

RandomSingleGate produces the tallest C ′ on average among all the circuits.

4.3.3 RandomTwoGates. RandomTwoGates is meant to be a two-gate version

of RandomSingleGate. All subcircuit selections Csub are of the class CXsub-Ysub-2-Ωsub

where

Ωsub ⊂ {AND, NAND, OR, NOR, XOR, XNOR}
Xsub ≥ 2

Ysub = 1 or Ysub = 2

Ssub = 2

|Ωsub| = 1 or |Ωsub| = 2

38

The selection of Csub is accomplished by sequentially selecting the two gates.

The first gate, g1, is selected entirely randomly, in exactly the same fashion as the

gate gk was selected by the RandomSingleGate algorithm. The second gate, g2, must

be selected more carefully, however, in order not to introduce cycles after replacement.

Specifically, g2 can only be selected from a specific subset of gates in C ′
i that remains

after g1 was selected (ref. Section 4.2.2). The procedure is shown in Algorithm 2.

Algorithm 2 RandomTwoGates(C ′
i)

1: Gcand ← ∅ {set of candidate gates to select from randomly}
2: Gcand ← Gcand ∪G(C ′

i) {set of all gates in C ′
i}

3: g1 ← call SelectRandomGate(Gcand)
4: Gcand ← Gcand − {g1} {g1 cannot also be g2}
5: Gcand ← Gcand − {call RejectGates(g1, true)} {remove predecessors of g1}
6: Gcand ← Gcand − {call RejectGates(g1, false)} {remove successors of g1}
7: g2 ← call SelectRandomGate(Gcand)
8: Gsub ← ∅ {set of gates to induce Csub}
9: Gsub ← Gsub ∪ {g1, g2}

10: return Gsub

There were two motivations for developing RandomTwoGates. We wanted to

continue testing the capabilities of CORGI to determine if the selection/replacement

process will work for Crep with more than one output. We also had the intuition

that a replacement for a multi-input, multi-output subcircuit would introduce new

external control flows.

RandomTwoGates is (almost) purely a random selection algorithm. The only

caveat is that not every pair of gates (g1, g2) ⊂ G(C ′
i) are “legal” selections since

some pairs introduce cycles when replaced. Despite the fact that the candidates for

selecting g2 is a subset of G(C ′
i)−{g1}, RandomTwoGates is in no way a smart selection

algorithm.

There were three results from analyzing the behavior of RandomTwoGates. First,

we confirmed our intuition that new external control flows can indeed be intro-

duced. Second, similar to RandomSingleGate, the circuit becomes very tall, with

few gates in any single hierarchical level. Third, RandomTwoGates runs slower than

39

RandomSingleGate because CXL must select from a larger store of semantically equiv-

alent replacements as the number of inputs increases. We will discuss each result

separately.

By far the most profound discovery was that new external (and internal) con-

trol flows can be introduced (but it does not always occur). The reason it can is

because the subcircuit selected can be (and often is) comprised of two gates, g1

and g2, which are not adjacent to each other (i.e., g1 is not a predecessor of g2).

If g1 and g2 are adjacent, then the resulting subcircuit Csub will have only one output,

and RandomTwoGates will behave like RandomSingleGate for that single iteration.

The probability P that RandomTwoGates creates a new control flow during any

given replacement iteration i is described by

P (i) ∝
(

1− ne

X × Y

)
× pc × pa (4.1)

where i, ne, X, Y , pc, and pa are described below:

i A particular iteration of the algorithm

ne Number of external control flows in C ′
i before selection

X, Y Number of inputs and outputs, respectively, of C ′
i

pc Probability that CXL returns a replacement subcircuit Crep with
more control flows than Csub (ref. Figure 4.4 for an example)

pa Probability that RandomTwoGates will choose two gates adjacent
to one another (i.e., the output of one gate feeds an input of the
other—ref. Section 4.3.2)

The foregoing can best be demonstrated with an actual circuit. Figure 3.2

depicts ISCAS benchmark C17, which was the target circuit for an experiment to

demonstrate how selection algorithm RandomTwoGates can introduce new external

control flows. A series of 20-iteration trials were performed until the final circuit C ′

had more external control flows than the original C (i.e., ISCAS benchmark C17).

After only seven trials, a C ′ was found with a path from input 1 to output 23, which

was not present in C. CORGI has the capability to output the results of each iteration

40

of randomization, and by looking back through the data, we found that the seventh

iteration produced the desired effect. Figure 4.2 shows the transition from C ′
6 to C ′

7

(iteration #7 in this example).

The second result for RandomTwoGates—the fact that it also makes circuits grow

very tall—was somewhat unexpected. In retrospect, it probably should not have been

since the same relationship between the hierarchical levels of Csub and Crep described

in Section 4.3.2 exists for RandomTwoGates. As circuit size increases, the probability

that Csub will have two hierarchical levels (` = 2) decreases since the number of

adjacent gate pairs in C ′
i is exponentially smaller than the number of all gate pairs

in C ′
i. The rate at which a circuit obfuscated with RandomTwoGates grows taller

is, on average, slightly slower than for RandomSingleGate since there is a non-zero

probability that a one-output Csub is selected during a given iteration of subcircuit

selection and replacement.

The third result has to do with a non-intuitive property of circuit families. The

size of a given family δ is a function of several factors, including input quantity,

output quantity, basis, and gate quantity. But it is also a function of the signature

(truth table) of elements of δ. Some families have circuit signatures such that there

are relatively few (sometimes zero) elements. Others families may have thousands of

elements. When a subcircuit Csub is selected such that |δ| is large, the selection of a re-

placement Crep takes longer. RandomTwoGates selects Csub such that δCsub
(from which

CXL must choose a Crep) is, on average, larger than it is when RandomSingleGate

is the selection algorithm. See [10] for more details on the relationship of a circuit’s

signature (truth table) to the size of its circuit family.

Reference Figure A.6(b) for a sample result of applying this algorithm to IS-

CAS benchmark circuit C17. Again, from the data presented in Section A.3, Random-

TwoGates produces C ′ which are, on average, about half the height of circuits pro-

duced by RandomSingleGate.

41

(a) Circuit C ′6 with Csub selected (b) New circuit C ′7 with Crep inserted

Figure 4.2: Subcircuit selection and replacement using RandomTwoGates on ISCAS
C17, which creates a new external control flow in the circuit (input 1 [In1] to out-
put 23 [Out23]).
(a) Gates 31 and 32 (Csub) will be removed from C ′

6. Note there is no control flow
from In1 to Out23.
(b) New circuit C ′

7 is created after Csub in circuit C ′
6 is replaced with semantically

equivalent Crep (gates 41, 42, and 43). A new control flow now exists from In1
to Out23 (path: In1→35→41→42→29→40→Out23).

42

(a) Circuit C ′7 with Csub selected (b) New circuit C ′8 with Crep inserted

Figure 4.3: Subcircuit selection and replacement using RandomTwoGates on ISCAS
C17, which replaces a two gates, each added during different iterations.
(a) Gates 39 and 43 (Csub) will be removed from C ′

7. Note that gate 39 was not in
the original circuit.
(b) New circuit C ′

8 is created after Csub in circuit C ′
7 is replaced with semantically

equivalent Crep (gates 44, 45, 46, and 47). Because of the structure of the selected
replacement circuit, gates 38 and 35 are each elevated to the next higher layer in the
circuit hierarchy.

43

(a) Csub from Figure 4.2(a) (b) Crep from Figure 4.2(b)

Inputs Outputs
26 35 39 31/42 32/43
F F F F T
F F T F T
F T F F T
F T T F F
T F F T T
T F T T T
T T F T T
T T T T F
(c) Truth table of Csub and Crep

Figure 4.4: An example of how a replacement subcircuit Crep can
introduce a new control flow where none existed in the selected subcir-
cuit Csub (reference Figure 4.2).
(a) No control flow exists between gate 35 and gate 29 in Csub.
(b) Subcircuit Crep has a control flow from gate 35 to gate 29.
(c) The truth table of both circuits.

44

4.3.4 RandomLevelTwoGates. The RandomLevelTwoGates selection algo-

rithm functions the same as RandomTwoGates except that Gcand only contains gates

which are in at most three contiguous levels of the circuit hierarchy. All subcircuit

selections Csub are of the class CXsub-Ysub-2-Ωsub
where

Ωsub ⊂ {AND, NAND, OR, NOR, XOR, XNOR}
Xsub ≥ 2

Ysub = 1 or Ysub = 2

Ssub = 2

|Ωsub| = 1 or |Ωsub| = 2

`g2 = `g1 ± 1

The similarity between RandomLevelTwoGates and RandomTwoGates is in how it

selects the first gate, g1. In both cases, g1 is selected entirely at random. Since gate g1

occupies some hierarchical level `g1 , then level `g1 is a de facto random selection.

The difference between these two algorithms is in how gate g2 is selected. With

RandomLevelTwoGates, gate g2 must be selected from within levels `g1 , `g1 + 1, or

`g1 − 1. As we saw with RandomTwoGates, its gate g2 selection can be any gate that

does not introduce a cycle. Note that RandomLevelTwoGates selects two gates which

are within one level of each other. Therefore, no call to RejectGates is required since

it is impossible to introduce a cycle.

Having observed that RandomTwoGates increases the number of hierarchical lev-

els (i.e., the height) at approximately half the rate of RandomSingleGate (see Sec-

tion A.3 for discussion), we developed RandomLevelTwoGates to see if we could further

reduce the rate of height increase relative to the number of iterations performed, yet

retain as much randomness as possible otherwise. The conjecture was that, by limit-

ing subcircuit selection to gates in a single “band” of at most three hierarchical levels,

45

Algorithm 3 RandomLevelTwoGates(C ′
i)

1: call EstablishGateHierarchy() {Assigns each gate to a hierarchical level}
2: Gcand ← ∅
3: g1 ← call SelectRandomGate(G(C ′

i)) {A random gate from any level}
4: `g1 ← hierarchy level of gate g1

5: Gcand ← Gcand ∪G(`g1) {all gates in level `g1}
6: Gcand ← Gcand − {g1}
7: if `g1 > 0 then
8: Gcand ← Gcand ∪G(`g1 − 1) {all gates one level below g1}
9: end if

10: if `g1 < `MAX then
11: Gcand ← Gcand ∪G(`g1 + 1) {all gates one level above g1}
12: end if
13: g2 ← call SelectRandomGate(Gcand)
14: Gsub ← ∅
15: Gsub ← Gsub ∪ {g1, g2}
16: return Gsub

the propensity of a replacement circuit Crep to increase the circuit’s height should be

further mitigated.

The fact that we specifically disregard particular levels when choosing g2 makes

RandomLevelTwoGates a smart selection algorithm. Gate g1 is still selected randomly,

but since the subset of gates from which g2 is chosen is dependent on g1, we expect to

be able to better control how RandomLevelTwoGates modifies a circuit. The reason

that g2 is not restricted only to `g1 is because of the nature of subcircuits Crep returned

by CXL. As previously discussed in Section 4.3.2 (page 38), Crep can—and often

does—have more than one hierarchical level. If it occurs that Csub has the same

height as Crep, then the overall circuit C ′
i will not grow in height during iteration i.

There were four results from analyzing the behavior of RandomLevelTwoGates.

First, we confirmed our hypothesis that RandomLevelTwoGates produces shorter cir-

cuits than either RandomSingleGate or RandomTwoGates. Second, we demonstrated

that a smart selection strategy can be employed to guide the behavior of a white-box

obfuscator to a particular end. In this case, we took our observations of how single

46

iterations of random selection strategies impacted circuit growth to develop a smart

algorithm.

The third result is the nature of the internal circuit structure. Unlike the two

random selection algorithms, RandomLevelTwoGates has connections (edges) which

span fewer hierarchical levels. This can be observed by comparing Figures A.5(b)

and A.6(b). In the former image, many connections span more that half the length

of the circuit, whereas in the latter image, connections spanning more that eight

levels appear much less frequently. The implication of this finding is that level-based

algorithms could be useful if connection length is a circuit property that correlates to

the degree of obfuscation.

The fourth result has to do with algorithm efficiency. The function Establish-

GateHierarchy is a component of this (indeed, all four) level-based algorithm. It

must be invoked at the beginning of every iteration, as shown in algorithms 3, 4 , 5,

and 6 (line 1 in each). In its current implementation, EstablishGateHierarchy is

inefficient.1 For C ′
i with small size |S|, this is not a problem; but as the number of

iterations increase, the circuit size also increases, and EstablishGateHierarchy slows

down the selection algorithm. Future versions of CORGI must take this performance

factor into account in order that level-based selection algorithms are efficient for large

circuits.

4.3.5 FixedLevelTwoGates. The FixedLevelTwoGates selection algorithm

functions the same as RandomLevelTwoGates except for two differences. Whereas in

RandomLevelTwoGates the target level is based on the selection of gate g1, the opposite

is true here. FixedLevelTwoGates must first have a level `F to target (user input),

and from that level, it selects gate g1 (the numerical value of `F remains constant for

all iterations). In addition, FixedLevelTwoGates selects gate g2 only from levels `F or

`F +1 (not from `F − 1). All subcircuit selections Csub are of the class CXsub-Ysub-2-Ωsub

1The details of why this is the case are discussed in Appendix A

47

where

Ωsub ⊂ {AND, NAND, OR, NOR, XOR, XNOR}
Xsub ≥ 2

Ysub = 1 or Ysub = 2

Ssub = 2

|Ωsub| = 1 or |Ωsub| = 2

`g2 = `g1 or `g2 = `g1 + 1

Algorithm 4 FixedLevelTwoGates(C ′
i)

1: call EstablishGateHierarchy()
2: Gcand ← ∅
3: `F ← fixed level where 0 ≤ F ≤ `MAX {user inputs F}
4: Gcand ← Gcand ∪G(`F) {all gates in level `F}
5: g1 ← call SelectRandomGate(Gcand)
6: Gcand ← Gcand − {g1}
7: if `F < `MAX then
8: Gcand ← Gcand ∪G(`g1 + 1)
9: end if

10: g2 ← call SelectRandomGate(Gcand)
11: Gsub ← ∅
12: Gsub ← Gsub ∪ {g1, g2}
13: return Gsub

The first three algorithms developed successively improved control over cir-

cuit growth as measured by circuit height, yet they each created a wide range of

height results. In other words, over many trials, the data shows a large standard

deviation (σ) for circuit height (see Figure A.2). Our motivation for developing

FixedLevelTwoGates next was to observe whether targeting a single level for subcir-

cuit selection would cause the circuit to grow wider than it did with

RandomLevelTwoGates.

There were two findings regarding FixedLevelTwoGates, one negative, and

one positive. First, it produces circuits which are (on average) both taller and

48

narrower than those produced by RandomLevelTwoGates. This is the opposite of

what we expected, but the circuits did exhibit one similarity to those produced by

RandomLevelTwoGates; namely, there are relatively few connections that span more

than 10% of the circuit’s height.

Second, however, FixedLevelTwoGates achieved more predictable behavior rel-

ative to the number of iterations performed (i.e., smaller standard deviation, σ). We

attribute that fact to limiting the selection of gate g2 to only two, rather than three,

contiguous levels in C ′
i. This substantially limits the set of gates from which gate g1

may be selected (the previous three algorithms select gate g1 at random from among

all gates in C ′
i). As a result, this smart selection algorithm has much less randomness,

which may be the basis of the tight coupling between circuit height and number of

iterations.

4.3.6 LargestLevelTwoGates. With LargestLevelTwoGates, we combine

the variable level selection of RandomLevelTwoGates with the targeted level selection

of FixedLevelTwoGates. This algorithm is procedurally the same as FixedLevel-

TwoGates except that the selected largest (widest) level, `W , is calculated for every

iteration.

Algorithm 5 LargestLevelTwoGates(C ′
i)

1: call EstablishGateHierarchy()
2: Gcand ← ∅
3: `W ← widest (largest) level where 0 ≤ `W ≤ `MAX {tiebreaker: smallest `W}
4: Gcand ← Gcand ∪G(`W) {all gates in level `W}
5: g1 ← call SelectRandomGate(Gcand)
6: Gcand ← Gcand − {g1}
7: if `W < `MAX then
8: Gcand ← Gcand ∪G(`g1 + 1)
9: end if

10: g2 ← call SelectRandomGate(Gcand)
11: Gsub ← ∅
12: Gsub ← Gsub ∪ {g1, g2}
13: return Gsub

49

Our objective in developing LargestLevelTwoGates is an algorithm that is ag-

ile enough to “chase” the largest (widest) level as C ′
i grows. The nature of subcircuit

replacement, combined with the rigidity of predecessor relationships in a combinato-

rial Boolean circuit, causes gates to migrate to higher levels in the circuit hierarchy.

When a gate moves from one level to the next, the population of the level it origi-

nally occupied decrements by one. To combat this tendency, LargestLevelTwoGates

always selects gates from the largest level. If multiple levels are largest, choose the

lowest level among them.

Two results from LargestLevelTwoGates are clearly evident in Figure A.7(c).

First, the algorithm provides more control over circuit growth than any of the previous

selection algorithms. From the data in Section A.3, we see the average height of C ′

produced by LargestLevelTwoGates is approximately 54% the average height of

C ′ produced by its nearest competitor, RandomLevelTwoGates. Circuits produced

using LargestLevelTwoGates are also much wider than any of the other circuits.

RandomLevelTwoGates is again the closest competition, but LargestLevelTwoGates

produces C ′ more than twice as wide.

A second result is the fact that LargestLevelTwoGates can introduce external

control flows, just as we first saw with RandomTwoGates. The C ′ circuit represented

in Figure A.7(c) has external control flows In1–Out23 and In7–Out22, whereas the

original circuit C in Figure A.7(a) does not. Thus, LargestLevelTwoGates provides

a high degree of control over circuit growth, yet retains the potential to introduce

control flows.

4.3.7 OutputLevelTwoGates. The last of the six algorithms is another

variation on a theme. OutputLevelTwoGates is, in fact, only a special case of

FixedLevelTwoGates where the target level contains the circuit outputs. In other

words, using FixedLevelTwoGates with `F = 0 is the same as using OutputLevel-

TwoGates. Algorithm 6 shows this special case.

50

Algorithm 6 OutputLevelTwoGates(C ′
i)

1: call EstablishGateHierarchy()
2: Gcand ← ∅
3: `0 ← level 0 which only contains circuit output gates
4: Gcand ← Gcand ∪G(`0) {all gates in level `0}
5: g1 ← call SelectRandomGate(Gcand)
6: Gcand ← Gcand − {g1}
7: Gcand ← Gcand ∪G(`1) {all gates in level `1}
8: g2 ← call SelectRandomGate(Gcand)
9: Gsub ← ∅

10: Gsub ← Gsub ∪ {g1, g2}
11: return Gsub

OutputLevelTwoGates was developed purely out of curiosity, and it proved

to be a worthwhile endeavor. When `F > 0 in FixedLevelTwoGates, there is the

possibility that the width of `F can increase. Conversely, the width of a circuit’s

output level (`0) is fixed, so any replacement of a subcircuit that contains an output

gate must not increase the number of circuit outputs.2 The net effect on circuit growth

is best described by way of analogy, followed by three example C ′ circuits produced

by OutputLevelTwoGates.

The behavior of OutputLevelTwoGates resembles the manufacturing process of

extrusion which creates long objects of a fixed cross-sectional profile. In this case,

the cross-sectional profile is circuit width. However, unlike the random algorithms,

OutputLevelTwoGates produces circuits in which all3 levels are approximately the

same width as output level `0. Regardless of how many outputs the circuit has, or

how many iterations are performed, the widest level will contain only a few more

gates than the output level, `0.

To see the extrusion effect, reference C ′ in Figure A.5(c) which has height of

93 levels and widest layer only of 4 gates. But on average, all layers are not 4

2Under the concept of black-box refinement, adding decoy outputs—and inputs—is desireable.
This research does not address the concept, however, so we restrict ourselves to preserving circuit
input and output quantities.

3An exception to this is when, prior to iteration 1, the widest level of C is substantially wider
than `0.

51

gates wide; they are only 2 gates wide, which is equal to the number of outputs.

For another demonstration, we apply OutputLevelTwoGates to a different ISCAS

benchmark circuit, C880, which has 26 outputs. The results, for different numbers of

iterations, are shown in Figures A.8–A.10. Again, the average width of all layers is

approximately 26, which is the same as `0.

From these results, we must revisit our observations for FixedLevelTwoGates.

Basically, FixedLevelTwoGates behaves the same as OutputLevelTwoGates, but the

extrusion occurs at some user-defined level. In essence, the target circuit C will be

“split” at the chosen level `F which has a particular number of gates, nF . All levels

0 through `F − 1 will remain unchanged and an extruded subcircuit will connect the

top and bottom of C in the final randomized circuit C ′.

4.4 Runtime performance analysis

We conclude with a brief discussion on the runtime performance of the six

algorithms. This is not intended to be a rigorous examination of CORGI performance,

but instead it will provide an understanding of what factors influence run times as

well as compare the performance of each of the six selection algorithms relative to one

another. Figures 4.5–4.16 contain runtime performance data for the six algorithms as

applied to two different ISCAS BENCH circuits: C17 and c880. Each figure displays

representative results from two trials for each combination (i.e., selection algorithm

and circuit). In all cases, each trial is 1000 iterations. Table 4.1 provides a summary

of the data.

The time required for each iteration of randomization is comprised of the time

needed to perform the selection and the time required for CXL to produce a replace-

ment subcircuit. For all algorithms, the latter is independent of both the structure

of C ′
i and the time required for CORGI to select a subcircuit from C ′

i; however, the

runtime of CXL is dependent on whether it generates an equivalent subcircuit at

runtime, or simply selects an equivalent subcircuit from a static store. For the data

presented here, we used the runtime option. Even though that choice is more time-

52

Algorithm
C17 C880

Trial 1 Trial 2 Trial 1 Trial 2
RandomSingleGate 38 ms 37 ms 44 ms 44 ms
RandomTwoGates 441 ms 447 ms 476 ms 504 ms

RandomLevelTwoGates 290 ms 282 ms 430 ms 436 ms
FixedLevelTwoGates 404 ms 393 ms 420 ms 438 ms

LargestLevelTwoGates 350 ms 359 ms 400 ms 373 ms
OutputLevelTwoGates 331 ms 359 ms 438 ms 445 ms

Table 4.1: Summary of runtime data for the six selection algorithms.
The data show the average per-iteration time (in milliseconds) after
1000 iterations for two trials on each of two circuits: C17 and C880.
Times are rounded to the nearest millisecond.

intensive, the average per-iteration time will remain constant over many iterations.

Therefore, by comparing the results of one selection algorithm to those of another (or

the same selection algorithm applied to different circuits), we can deduce the relative

performance characteristics of CORGI.

RandomSingleGate is the fastest of the six selection algorithms. Each subcircuit

only has one gate, thus the subcircuit only has one output. As a result, CXL can

more quickly return a replacement. The slower times for RandomSingleGate when

applied to C880 vs. C17 is because C880 initially has 437 gates to only 6 gates for

C17.

The remaining five selection algorithms are substantially slower than Random-

SingleGate primarily because selected subcircuits contain two outputs. Therefore,

the library of equivalent subcircuits in CXL is substantially larger. Since, for our

experiments, CXL generates the equivalent subcircuits at runtime, the per-iteration

times increase substantially as compared to RandomSingleGate.

RandomTwoGates is the slowest of the six selection algorithms. RandomTwoGates

is the only selection algorithm that calls RejectGates (Algorithm 9), which is a

recursive DFS.

For the four level-based selection algorithms, average run times over 1000 it-

erations are all less than times for RandomTwoGates. Whereas RandomTwoGates

53

calls RejectGates, the four level-based selection algorithms all call EstablishGate-

Hierarchy. This, too, is a DFS, but employs pruning. Pruning is a graph theory

technique for limiting the search space, and in part accounts for the relative speedup

of these four algorithms as compared to RandomTwoGates. Another factor that con-

tributes to the increased speed of these four algorithms is the frequency of selecting

single output subcircuits. Specifically, these algorithms select gates in adjacent hi-

erarchical layers, which means the second gate selected by the algorithms is more

likely to be a predecessor or successor of the first gate selected. The result of such a

selection is a one-output subcircuit, which CXL more quickly produces than it does

two-output subcircuits.

54

(a) Trial 1

(b) Trial 2

Figure 4.5: Sample per-iteration runtime data from applying selection algorithm
RandomSingleGate to circuit C17.

55

(a) Trial 1

(b) Trial 2

Figure 4.6: Sample per-iteration runtime data from applying selection algorithm
RandomSingleGate to circuit C880.

56

(a) Trial 1

(b) Trial 2

Figure 4.7: Sample per-iteration runtime data from applying selection algorithm
RandomTwoGates to circuit C17.

57

(a) Trial 1

(b) Trial 2

Figure 4.8: Sample per-iteration runtime data from applying selection algorithm
RandomTwoGates to circuit C880.

58

(a) Trial 1

(b) Trial 2

Figure 4.9: Sample per-iteration runtime data from applying selection algorithm
RandomLevelTwoGates to circuit C17.

59

(a) Trial 1

(b) Trial 2

Figure 4.10: Sample per-iteration runtime data from applying selection algorithm
RandomLevelTwoGates to circuit C880.

60

(a) Trial 1

(b) Trial 2

Figure 4.11: Sample per-iteration runtime data from applying selection algorithm
FixedLevelTwoGates to circuit C17.

61

(a) Trial 1

(b) Trial 2

Figure 4.12: Sample per-iteration runtime data from applying selection algorithm
FixedLevelTwoGates to circuit C880.

62

(a) Trial 1

(b) Trial 2

Figure 4.13: Sample per-iteration runtime data from applying selection algorithm
LargestLevelTwoGates to circuit C17.

63

(a) Trial 1

(b) Trial 2

Figure 4.14: Sample per-iteration runtime data from applying selection algorithm
LargestLevelTwoGates to circuit C880.

64

(a) Trial 1

(b) Trial 2

Figure 4.15: Sample per-iteration runtime data from applying selection algorithm
OutputLevelTwoGates to circuit C17.

65

(a) Trial 1

(b) Trial 2

Figure 4.16: Sample per-iteration runtime data from applying selection algorithm
OutputLevelTwoGates to circuit C880.

66

V. Conclusions

The work described in the foregoing chapters comprises only the beginning of

a much larger effort. Going forward, we expect a steep learning curve given

the “obstacle” of the impossibility result presented in [1]. However, this research—

combined with that which will follow—seeks to set intent protection (which alters

structure and function) apart from the common understanding of obfuscation (which

only alters structure). In this research, we focused only on the process of white-box

obfuscation, a necessary but not sufficient component of program intent protection.

We further narrowed our scope to white-box obfuscating combinational Boolean cir-

cuits. We developed an architecture for manipulating circuits, and developed an

initial set of algorithms for white-box obfuscating circuits via subcircuit selection and

replacement.

5.1 Contributions

Perhaps our biggest contribution to our area of study is CORGI, the tool upon

which this and future research is based. As with any new software, its development

was not without difficulty. However, without CORGI, the process of subcircuit selec-

tion and replacement would have been entirely manual which would have yielded little

data: calculations by-hand would simply take too long. On the other hand, the time

spent to develop a stable architecture clearly impacted the number and complexity of

selection algorithms that were produced. We view this tradeoff as appropriate since

it will allow future research to focus on the process of obfuscation rather than the

tool that performs the task.

The six subcircuit selection algorithms we produced yielded some surprising

results, and they gave us new insights into the heretofore untested process of subcir-

cuit selection and replacement. The RandomTwoGates algorithm alone provided two

valuable results. First, it demonstrates that the gates of a subcircuit need not be

connected to be selected. Additionally, RandomTwoGates also demonstrates how a

circuit library (CXL) can provide replacement subcircuits that introduce new control

67

flows in the circuit. These results mean that completely disparate portions of a circuit

can be intertwined, both from a black-box (functional) and a white-box (structural)

perspective.

All six of the algorithms revealed that circuit size always increases when only

one or two gates are selected for replacement. For single-gate subcircuits, all re-

placements have at least two gates. For a two-gate subcircuit, if its function is not

semantically equivalent to a basic gate (AND, NAND, OR, NOR, XOR, or XNOR),

then all replacement circuits in the circuit library will be, on average, larger than two

gates. Unless and until we devise algorithms that select three or more gates can we

expect to reduce circuit size. The ability to either increase or decrease circuit size

is how the process of subcircuit selection and replacement will be able to produce a

truly random circuit from a particular circuit family.

Finally, the three “smart” algorithms, especially, LargestLevelTwoGates, show

how circuit growth can be controlled and predicted, even when the selection algorithm

produces ever-increasing circuit size.

5.2 Future work

As alluded to above, we see 3-gate selection algorithms as the most important

next step in devising an intent protection framework. One approach is to extend

RandomTwoGates to select a third gate at random. This may be the easiest to do, but

our insight is that it will provide results which will guide the development of other

algorithms. In particular, as another approach, it may be advantageous during some

iteration of selection to chose only subcircuits for which there is a large population

of replacements in the circuit library.1 Such a strategy will require the algorithm

to find subcircuits with a particular truth table. In graph theory, this is known as

subgraph isomorphism, and is an NP-complete problem. Depending on circuit size,

it may nonetheless be a feasible approach.

1This assumes the library has a cache of metadata on its stores of circuit libraries which can be
quickly and easily searched.

68

There are at least two ways CORGI can be augmented which have nothing to do

with the algorithms directly. Currently, CORGI maintains no historical log of what

steps and in what order were performed to obfuscate a circuit. A future version of

CORGI with this capability would benefit the notion that an original circuit can be

recovered from an obfuscated version. In a sense, such a log file would be analogous

to a data encryption key for the white-box portion of the obfuscator. It remains to be

seen what advantages might accrue for the cost of this operation, but its a question

worth exploring.

Finally, CORGI is a solid proof-of-concept tool, but to make it better suited

to the research, two major augmentations need to occur. An obvious shortfall is the

need for a better user interface. Although not addressed in this text, the tool func-

tionality was accessed for this research entirely through test cases since the textual

user interface was too cumbersome for repeated experimentation. Ideally, a graphical

user interface will be developed so that rapid selection of input parameters and selec-

tion algorithm(s) will further keep the focus on experimentation rather than coding.

CORGI also needs a review of the efficiency of some of its processes (not the selection

algorithms themselves). Under the hood, there are several methods which employ re-

cursive search algorithms that are not very efficient. They become even less efficient

as circuit size increases. By instituting some optimization techniques, and limiting

calls to these methods only when necessary, CORGI will be more likely to achieve, at

worst, polynomial slowdown for large circuits.

69

Appendix A. CORGI software

A.1 CORGI architecture

A.1.1 Functionality. CORGI is a Java application which employs a model-

view-controller (MVC) architecture. In Figure A.1 (page 71), the model is the

Circuit, which is composed of Gate objects. The controller is CircuitController.

The view is the UserCommandParser, which provides the user a text-based user in-

terface.

A.1.1.1 JGraphT. The Java graph library JGraphT, introduced in

Section 3.3.1.1, is the “engine under the hood” of CORGI. Recall, the ‘G’ in CORGI

stands for graphs, and JGraphT is what allows us to manipulate circuits as DAGs,

yet elide that fact from the user. Every circuit has an underlying graph (DAG), so

Circuit is really a façade for a JGraphT DirectedGraph.

All circuit modifying behavior is contained in Circuit; however, the mechanism

of subcircuit selection and replacement is modularized as a separate class, ... (more

to come)

A.2 Non-selection algorithms

For the sake of brevity in the main text, the discussion of the non-selection al-

gorithms is presented here. The entire process of subcircuit selection and replacement

is given in Algorithm 7. The procedures for removeSubCircuit, fetchReplacement,

and insertReplacement are elided since they are purely “mechanical” in the sense

that they do not impact the selection process. Once a subcircuit Csub is selected from

circuit C ′
i, then these three methods will, respectively, remove Csub, get a replacement

circuit Crep from CXL, then insert Crep in place of Csub.

Algorithm 8 (SelectRandomGate) and Algorithm 9 (RejectGates) are helper

methods used by the six selection algorithms discussed in Chapter IV. SelectRandom-

Gate simply selects a single gate at random from among a set of gates. This capability

is needed since subcircuit selection relies on a sequence of random gate selections.

70

Figure A.1: The UML class diagram which shows the CORGI architecture.

71

Algorithm 7 performReplacement(Selection(C ′
i))

1: C ′
i ← circuit C after i iterations of randomization

2: Gsub ← ∅ {subset of gates in C ′
i: Gsub ⊂ G(C ′

i)}
3: Gsub ← call Selection(C ′

i) {the interface for the selection algorithms}
4: Csub ← call RemoveSubCircuit(Gsub)
5: Crep ← call FetchReplacement(Csub) {this is the CXL interface}
6: C ′

i+1 ← call InsertReplacement(Crep)
7: return C ′

i+1 {circuit C ′
i after replacing Csub with Crep}

Algorithm 8 SelectRandomGate(G)

Require: G is a non-empty set of gates
1: k ← uniform random number such that 0 ≤ k < |G|
2: gk ← the kth gate in G
3: return gk

RejectGates identifies the set of all gates which lie on all paths through a

particular gate and which are more than one hierarchical level removed from said

gate. RejectGates is the means by which performReplacement prevents cycles from

being introduced in C ′
i+1 when replacing a subcircuit that contains more than one

gate.

72

Algorithm 9 RejectGates(gk, P)

Require: P true for predecessors of gk, false for successors of gk

1: Grej ← ∅ {set of rejected gates}
2: Gcurr ← ∅ {set of gates being considered for rejection}
3: Gprev ← ∅ {set of gates already considered for rejection}
4: Gnext ← ∅ {set of gates to be considered for rejection}
5: Gadj ← ∅ {set of predecessors (successors) of a gate}
6: Gcurr ← Gcurr + gk

7: if P = true then
8: Gadj ← predecessors of gk

9: else
10: Gadj ← successors of gk

11: end if
12: for all gates ga in Gadj do
13: if difference between hierarchy levels of ga and gkis > 1 then
14: Gcurr ← Gcurr ∪ {ga}
15: end if
16: end for
17: Gadj ← ∅
18: while Gcurr 6= ∅ do
19: Gnext ← ∅
20: for all gates Gc in Gcurr do
21: if P == true then
22: Gadj ← predecessors of Gc

23: else
24: Gadj ← successors of Gc

25: end if
26: Gnext ← Gnext ∪Gadj

27: end for
28: Gprev ← Gprev ∪Gcurr

29: Gcurr ← ∅
30: Gcurr ← Gcurr ∪Gnext

31: end while
32: return Grej

EstablishGateHierarchy is a circuit function that sets the hierarchy at-

tribute for all gates in the circuit. When there are multiple paths between a particular

pair of gates, and when one path is shorter than the other (in terms of number of

gates along the path), then one or more of the gates on the shorter path could legally

occupy any one of several levels in the hierarchy. We choose to assign gates to the

73

lowest possible level that adheres to this convention: every gate in the circuit will

always occupy a level that is lower (smaller) than the level of any of its predecessors.

Algorithm 10 EstablishGateHierarchy()

1: label all gates as `0

2: `G ← 0 {initialize global maximum level}
3: `L ← 0 {initialize local (output) maximum level}
4: for all circuit output gates gout do
5: `L ← call SetGateHierarchies(gout, 0, 0)
6: `G ← MAX(`L, `G)
7: end for

None of the so-called level -based selection algorithms would function properly

without EstablishGateHierarchy. EstablishGateHierarchy, in turn, relies upon

the recursive function SetGateHierarchies (described in Algorithm 11). The way

it works is to perform a DFS beginning at each circuit output, explore that output’s

predecessor tree (in the underlying DAG), and set the the hierarchy attribute for all

gates along the way. Some pruning is performed, but there will invariably be gates

that are visited at least twice, which makes EstablishGateHierarchy inefficient.

Since so much of CORGI relies on gates having a correct hierarchy attribute, future

versions of CORGI will benefit greatly from optimizing EstablishGateHierarchy.

Algorithm 11 SetGateHierarchies(gi, `L, `G)

1: for all predecessor gates gj of gate gi do
2: if `(gj) ≤ `(gi) then
3: `(gj) ← `(gj) + 1
4: `G ← call SetGateHierarchies(gj, `L + 1, `G)
5: end if
6: return MAX(`L, `G)
7: end for

A.3 Selection algorithm behavior

Figures A.2, A.3, and A.4 give insight into the behavior of the six selection

algorithms.

74

Algorithm Hmax Havg Hmin Hσ

R1G 291 183.7 117 61.5
OL2G 103 97.7 90 4.8
R2G 119 89.9 75 15.6
FL2G 78 69.6 62 5.1
RL2G 87 65.6 46 14.0
LL2G 46 35.2 31 4.2

(a)

Algorithm Wmax Wavg Wmin Wσ

R1G 9 6.3 4 1.5
OL2G 5 4.4 4 0.5
R2G 7 5.3 4 1.1
FL2G 6 5.4 5 0.5
RL2G 8 6.8 5 1.2
LL2G 20 14.8 12 2.4

(b)

Algorithm Havg/Wavg Growth(%)
R1G 29.2 90.4

OL2G 22.2 47.4
R2G 17.0 43.5
FL2G 12.9 33.3
RL2G 9.6 31.3
LL2G 2.4 16.1

(c)

Figure A.2: Experimental results from performing ten trials of 200 iterations each
using all six selection algorithms, with ISCAS circuit C17 as the target C. To pro-
vide a common mode of comparison, all three tables are sorted in decreasing order
of Havg.
(a) The number of hierarchical levels in C ′ (maximum, average, minimum, and stan-
dard deviation).
(b) The number of gates in the widest hierarchical level of C ′ (maximum, average,
minimum, and standard deviation).
(c) Height-to-width ratio and rate at which number of hierarchy levels increase per
iteration.

75

Figure A.3: Chart of data from Figure A.2(a).

76

Figure A.4: Chart of data from Figure A.2(b).

77

A.4 Selection algorithm results

A.4.1 C17 with all algorithms. Figures A.5, A.6, and A.7 display examples

of the results achieved when each of the six algorithms are applied to a simple ISCAS

benchmark circuit, C17. In each case, the algorithm ran for 200 iterations. The

images are DAGs which represent the various circuits. While they are not strictly

circuits, they demonstrate the behavior of each algorithm. All images are drawn to

relative scale for ease of comparison.1

A.4.2 C880 with OutputLevelTwoGates. Figures A.8, A.9, and A.10 shows

how circuit C880 changes over time when randomized using the OutputLevelTwoGates

selection algorithm. Compare Figure A.8 to Figure A.5(c). Note that C880, which has

26 outputs, grows in height much more slowly than does C17, which has 2 outputs,

when OutputLevelTwoGates is applied for 200 iterations.

1When viewing this document electronically in PDF format, the circuit details can be seen by
zooming in to at least 1600% magnification.

78

In1

10 In2

16

In3

11

In6

In7

19

Out22 Out23

(a)

In1

312

314

432433

In2

64 399

400

In3

11

236

507

508

In6

In7

164

447

30 42

91

159 180

182

319

363

364396405

407

414

416

555

32

212

219

456

38

146

496

43

52 106

108

544

47

48

71

119

171

67

68

72

140

351352

75

76

277

441600

602

609

79

Out23

Out22

225226 504

506

82

567

568

570

571

84

303304

127

137

204

205

402

404

498

499

500

564

591 592

99

103

104

105

516517

543

118

111

301

307

308

534

535

114

294

240

343

471

124

165

166

494

130

390

391

247324

141

153

142

217

465

147

258

259

260

309

310

514

150

152

154

155

522

156

157

267615

616

163

249

250

251

161

448

167

438

440

169

170

238525

526

173

572

174

176

232

179

330 331

495

546

185

188

360

189

423

193

355378

196

213 483

484

485

199

208

345

346

203

261

262

492

493

206

209

231

233

215

264

266

218

288

457

474

222

223

224

511

227

297298

228

230

229

450

245

248

316

317

436

437

531532

263

265

269

369

270

292

468469

274

420

278

283

284

337

453

455

286

287

486

487

502

293

357

358

359

424

333

296

472

299

302

510

512

305

373

374

587

594

595

313

320

523

321

322

323

417

418

326

327

576

329

332

335

444489

530

336

338

426 427

339

480 344

429

431

347

349

350

601

368

562366

356

362

513

365

408

421

370

371

376

377

540 541

379

380

537

538

539

382

383

384

385

386

387

388

389

392

393

569

556

557

398

612613

478

579

580

581

406

409

561

411

413

549 550

419

422

425

428

430

434

459

461

446

449

452

451

454

476

460

462

588

466

573

597

598

599

473

475

501

479

481

482

488

490

528

497

566

503

505

509

558

560

515

518

521

524

527

606

533

552

542

545

548

551

553

554

559

582

563

618

619

620

574

575

577

578

603

604

583

584

585

586

589

590

593

596

605

607

608

610

611

614

617

(b)

In1

26 In2

16

In3

11

In6

In7

19

24

34

37

44

47

36

41

28

30

31

32

53

40

45

46

50

49

55

54

62

64

57

59 65

63

75

83

84

71

67 77

73

74

82

79

80

81

8691

98102

88

9293

108

96

103

110

100107

117

115

113

112 119

122

116

128

134

130

126

127

131

141

142

166

145

135

138

139 147

148159

176

151

152

153

161

163

178194

195

201

175

165

168

169

171

187

177

180

181

186

184

188

197

204

207

208209

190

191

192

214

213

216

218211

215

229

225

230

221223

228

233

232

244

242 248254

238

240

241

258

249

255

250

252

259

256

265 266

261

289

301 309

263

280

268

270

275

272278

279

284282

286

291

292

287

296

306

298 303

300

308

310

307

312

313

315

332

314 353362

319 320

323

321

328

338

339

344

330

336

341

346

348

347

351

354

349

369

371

378

360

364

365

375

367

372

381

382

373

379

380

Out22

384

385

Out23

(c)

Figure A.5: Comparison of original circuit (ISCAS C17) to sample results of R1G
and OL2G algorithms (200 iterations; circuits represented as DAGs).
(a) C = ISCAS benchmark circuit C17 (height = 3 levels, width = 3 gates).
(b) C ′ after applying RandomSingleGate to C (height = 189 levels, width = 7
gates).
(c) C ′ after applying OutputLevelTwoGates to C (height = 93 levels, width = 4
gates).

79

In1

10 In2

16

In3

11

In6

In7

19

Out22 Out23

(a)

In1

261

386

572604

608

In2

512

598

599

In3

179

321

343

364

378

393

499

523

566

586

602

In6

110

189

271

334

366426

532

In7

70

418

587

610

612

33

349

175

344

160

520

521

585

163

517

167

467

168

277

171

448

449

181

184

435

445

447

463

464

510

515516

190

508

509

209

219

439

223

312

360

530

227

235

280

411462

478

237

257

506616

618

249

250

544 545

251

536

Out22

574

268

333

493

495

363

552

593

287

288

494

290

306

Out23

421

327

603

353

527

531

537

579

562

563

356

487

591

359

368

555

367

456

373

514

384

472615

388

403407

525

412

596

406

528

410

413

417

490

497

458

427

428

429

432

550

564

580581

437

540

441

617

601

451

453

471

461465

466

488

470

551

595

481

473

568

476

477

547

518

485

584

607

491

557

613

614

498

501

503

507

546

542

538

590

524

526

529

534

600

558

549

597

570

560

571

605

576

575

578

582

592

594

588

611

606

609

(b)

In1

30

In2

45

In3

2739

In6

In7

62

Out22

Out23

42 43

36

57

54

69

90

47

48

66

93

95

102

113

117

63 75 81

140

70

72

106

96

98

105

153

156

115

114

108

130

126 141

145129

132

135

190

213

147 168

149

150

178

195

171

174

159

185 204 222

237

165

187

196

192

231

277198

209

207

219

216

220

226

244

255

264

225

228

234

243

249

258

259

267

270

282

272

275327

301

273

285

287348

297 306

318

307

291

294

300 351

309

310

343

382

333

324

330

332

336

357

345

354

364

359

369

360

393

366

378384 387 402

370

386 388

396

449

465

399

417

414

429

398

483

416

430

420

423

432

462

433

435

441

442

453

457 456 472

459

468 498

463

474

480

481

500

513

489

519

528543

549

550

495

492

516

497

504

511

534514

537

540

541

553

600

559

545 585

546

552

564

570572

582

621

588

573579

576597

591

603

605

606

612

599

618

601

609

613

615622

619

623

(c)

Figure A.6: Comparison of original circuit (ISCAS C17) to sample results of R2G
and FL2G algorithms (200 iterations; circuits represented as DAGs).
(a) C = ISCAS benchmark circuit C17 (height = 3 levels, width = 3 gates).
(b) C ′ after applying RandomTwoGates to C (height = 93 levels, width = 6 gates).
(c) C ′ after applying FixedLevelTwoGates to C (height = 67 levels, width = 6
gates).

80

In1

10 In2

16

In3

11

In6

In7

19

Out22 Out23

(a)

In1

473

In2

402

490

551

In3

455

474

In6

318 456

In7

45

Out22

111

521

523

117

161

419 528

138

296

348

507

550

165

330

177

247

274

374

194

424

203

377

400

206

450

483 491

541

222477

560

572

210

313

574

214

215

310 225

539

279

441

513

253

369

371

559

254

372

379

435

468

283

326

293

333

343

512

299

425

308

543

311

517

314

503

504

327

328506

508

428

453547

563

565

334

335

501

207

405

443

444

446

525

356

427

357

358

359

362

542

544

370

373

380

376

378

469

558

385

387

389

388

534

391

396

398

470

505

Out23

488

418

408

413

414

415

417

457

422

423

426

537

433

462

436

437

548

442

562

471

449

451

476

494 495

458

530

460

466

467

497498

502

554555

478

509

480

561

496

533

535

499

518 520

549

510

514

515 516

573

448 527

569570

571

526 529

531

536

538

566 567

540

557

552

553

564

568

(b)

In1

39

In2

16

In3

11

In6In7

36

Out23

30

3363

69

78

157

60

Out22

74

197

200

238

153159207

219

53

55

56

62

117

137

148

231 87

152

84

101

134

162

174

175

199

210

320

96

123130

136

102

105

135

126

127

132

139

138

140

146

149

161165

204

263

168

180

259

476

346

508

205

226

187

188

191

196

261

222

216

225 240

252

315

318

228

243

255

365

258

246

291

267 294

268

276

306

273

369

371

569285 381 435439

288

316

287

356

605

293

334

390

603

372

373 448

492

507

582

335 325

329

331

349

350355

361

362

393396

399

419

440

483

489

562

579

378

379

473501

387583

385

388

471

591

593

417

452

486

522

434

517

442

451 453

475

460

464

577

552565

498528

549551

595

600

601

493

504

505

571

585

587

534

536 523

527

574

531

532

540

544

545

572

561

568

564

566

575

576

578

543

597 598

581

584

589 594 607

599

606 608

604

(c)

Figure A.7: Comparison of original circuit (ISCAS C17) to sample results of RL2G
and LL2G algorithms (200 iterations; circuits represented as DAGs).
(a) C = ISCAS benchmark circuit C17 (height = 3 levels, width = 3 gates).
(b) C ′ after applying RandomLevelTwoGates to C (height = 61 levels, width = 8
gates).
(c) C ′ after applying LargestLevelTwoGates to C (height = 32 levels, width = 15
gates).

In1

280

483

270

276

279269

In8

309

In13 In17

317

323322

432

443

In26

In29

986

984

285 287

273

290

291

In36

907 296 295

In42

284

294

In51

316

In55

427

437

In59

319

442286 293

In68 In72

In73

400

In74

In75

In80

In85

297

In86

In87

298

In88

In89

355

In90

886

In91

332 302 301 502

In96

333 504

In101

334304 303 506

In106

335 508

In111

336

511306305

In116

338

513

In121

340

515308307

In126

517

In130

519518499498

In135

501500

In138

318

In143

510 475

In146

512 477

In149

514 479

In152

In153

516 481

In156

In159

324325522 590593

In165

600

523 597

In171

609

606327326524

In177

616525 619

In183

625 628328329

526

In189

527

635

632

In195

330 331

528

644

641

In201

529

651

654

In207

521 520

In210

417

In219

810 809 808

836

852851853

794

In228

748 745

742

736

739

754 751759

In237

746749 740743737760 755 752

In246

605624 615640631659 650 596

In255

339 337341

In259In260

In261

734733732

758757In267

In268

310

806

825

807

828

804 721

805

811

802803

945

946

860

1164

861

385

943

1018

1293

827

949

987

712

845

947

1001

1002

826 777

814 673765766

747

796

530

552 550

772

533

551

813 682 764

539

565

770

538

561

537

557

678

536

553

744

822

677

771

741

819

349

935

930

994

1046

931

731

932

964

961952

1156

1222

933

998

343

392

963

345

393

346

399

937

347

410

348

540

569

735

849

409

463

929

1023

773

408

426

542

577

769

541

573

405

425

544

585587

738

815

543

581

404

407

406

460

424

547

586

402

925

923

778782

834 835839

829

840

837838

1005

926

482 480476 478369

921

922

859

416

495

727

415

445

918

972

466

722

763761756

700 697

696

832 833

414

413

492

412

444

795

411812

841 830831

379

382

375

915

376

910

912953

965

1087

1171

1245

913

1009

717

793792

669 686

713

762753

1201

687692704

451

843842

888

1022

981

1117

980

1072

1137

858

848

857

9901056

1010

847 846

855 854

844

788 789

708

790 791

489 488491 490

705

750

977

978

1031

357360

363366

971

1185

1004

974

975

1039

589

661

588

893 891

869 868

969

992

968

967

996

1011

1147

966

1008

862

991

873 872

867

871

960

1003

1169

959

1098

1047

958

954

956

1250

881

1043

1165

883

1203

1371

1502

1206

1233

1266

1200

1242

1301

1202

1306

1387

1247

1208

1256

1209

905

885

1119

887

1060

10591051

1052

882

899

904

877875

1075

1061

876

890

670

997

1007

1057

1106

1100

1013

1014

895

1000

896

903781785

786

787

505503509 507

662 665

1195

1217

1197

13781407 1433

1192

1193

1219

1090

1093

1114

1095

1146

1190

1426

1105

1089

1113

1188

1238

1186

1184

1183

1080

1120

1182 1180

1338 1083

1081

1234

1173

1078

1179

1230

1067

1102

1066

1064

1127

1063

1058

1110 1148 1049

1150

1054

1030

1017

1028

1033

10061157

1318

1213

350

1104

1140

1015

1163 1231

1375

1376

1125

1025

1111

1235 1236

1124

1134

1367

1122

1135

1176

1275

1336

14721130

1284

1259

352

351

1115

354

1118 1343

1214

1012

1264

1316

1446

1121

1162

1265 1136

1050

Out389

1170

1218

1139

1252

1297

1036

1312

1041

1143

1248

1167

1024

1302

1419

1505

1289

1294

1353

1458

1518

1552

Out419

1159

1161

12111261

1263

1210

1332 1225

1399

1257 1276

1278

12681272

1274

1258

1344

1329

1249

12431300

1346

1340

1342

1254

1348 1531 Out878

1310

1335

1267 1269

1260

1325

1281

1382

1279 1292

1286

1413

1326 1356

1417 1282

1392

1285

1368

1370

1473

1359

Out880

13631313

1328

13191504

1349

1373

1498

1323

1435

1361

1445

1436

1479

1454

1489

1350 1418

1484

1388

1424

1339

1383

1385

1396

1540

1403

1362 1437 14411374

1468

1386

1369

1393

1443

1389 15081565

1423

1440

Out388

1520

15221448

Out865

1477

14501500

1475

1397

1432

1429 1430

1444

1467

1406

1462

1459 1460

1414

1476

1456

1546

1547

1451

1491

1463 1511

1434

14961562

Out449

1533

1534 15151517

1538

1557

1559

1447

1507

1529

1481 1512

1465

1501

1492

1487

Out879

1485

Out418

Out863

Out767

Out390

Out423

1480

1486

1514

Out866

1493

1549

1526

Out450

1543

1568

1527

1495

Out420

1536

1539

1528

1567

1548

Out447

1523 1560

1564

1556

Out768

Out864

Out446

Out874

Out422

Out448

Out391

1542

Out850

1571 1555

1570

Out421

Figure A.8: C ′ after applying 200 iterations of OutputLevelTwoGates to ISCAS
benchmark circuit C880 (height= 42 levels, width= 38 gates).

81

In1

280

483

270

276

279269

In8

309

In13 In17

317

323 322

432

443

In26

In29

986

984

285 287

273

290

291

In36

907 296 295

In42

284

294

In51

316

In55

427

437

In59

319

442286 293

In68 In72

In73

400

In74

In75

In80

In85

297

In86

In87

298

In88

In89

355

In90

886

In91

332302301 502

In96

333 504

In101

334304 303 506

In106

335 508

In111

336

511306 305

In116

338

513

In121

340

515308307

In126

517

In130

519518

499498

In135

501 500

In138

318

In143

510 475

In146

512 477

In149

514 479

In152

In153

516 481

In156

In159

324 325522 590593

In165

523 597

600

In171

327 326524

609

606

In177

525 616 619

In183

328329

526

625 628

In189

527

635

632

In195

330 331

528

644

641

In201

529

651654

In207

521520

In210

417

In219

794 810 809808

836

852 851853

In228

748 745

742

736

739

754 751759

In237

746749 740 743737760 755 752

In246

596 605624 615640631659 650

In255

339 337341

In259In260

In261

734733732 758757

In267

In268

310

828

721

1414

1476

1413

860

945

946

1419

1547

861

1164 1418

1435

385

943

1293

1018

1417

1456

949

987

827

712

845

947

1001

1002

826 777530

552 550

747

796

772533

551 770

539

565

538

561

537

557

536

553

744

822

771

741

819

349

935

1424

1491

1423

1451

930

994

1046

1426

931

932

964

961952

1156

1222

731

933

998

343

392

963

1429

1444

1463

345

393

346

399

937

347

410

348

540

569

735

849

929

1023

773

769

542

577

541

573

544

585587

543

581

738

815805

547

586

811

778782

1437

15331706

1737

1767

1436

1468

1579

1592 1434

1622

1433

1432

1511

1430

925

1005

926

923

369482 480476478

921

922

727

918

972

722

763761756

839

1440

1446

1447

1445

1559

1557

1448

14501803

1507

379

382

1441

1515 1573

1443

1502

1538

375

915

376

910

912953

9651171

1087

1245

913

1009

669

717

793792

686677

713

762753

1201 838

1529

15121481

704 696

1022

981

1117

980

1137

1072

9901056

1010

700

788789

837

708

790 791

705

750

977

978

1031

357360

363

971

1185

1004

366

974

975

1039

589

661

588

893891

969

992

968

967

996

1147

1011

966

1008

991

960

1169

1003

959

1098

1047

958

954

956

1406

1462

1407

1459

1460

1250

1403

1203

1371

1206

1266

1233

1200

1301

1242

1202

1387

1306

1247

1208

1256

1209

806807 812 813 814

795

804

997

803

1007

1106

1057

1100

1000

781785

786

787

802

854

505

868

503

869

509 507

764 765766

867

1195

1217

1197

1378

1192

1193

1219 1190

1188

1238

1186

1184

1183

1182

1180

13381179

1230

1213

1396

1397

1104

1140

1393

1475

1473

1105

1376

1375

1163 1231

1102

1392

1110

1125

1389

1500

1388

1607

1386

1574

1382

1520

1660

1662

1672

1383

1385

1921

1124

1134

1367

1122

1135

1127

1336

1176

1275

1635

1130

1284

1119

673

670

1111

1259

1113

1115

1114

11181343

12141264

1316

1399

1467

1121

1120

662 665

841

1350

1368

1148

1150

1162

1146

1265

416 414

415

1348

1349

1346

1362

1344

1218

1342

1540 1139

1340

1136

1252

1297

413412

1339

411

1335

1590

1143

1248

1332

1370

1167

1374

1508 1565

1373

405 406

409408 407

489488491490

1173

1170

1302

1505

1312

1353

1518 1552

1458

1294

1289

1599

1701

1369

1157

11591318

1361

1161

1363

350

402

351

1078

352

354

404

1356

1210

1225

1359

1165

825

1319

1313

1323

1326

1310

1498

682

678

1329

1489

1454

1328

1325

1479

463

426

425

460

424

834835

829

840

859

495

445

466

697

832833 492

444

830 831

1300

1504

687692

451

843842

888

858

848

857

847

846

855

844

862

873872 871881

1043

883

1523

1616

1617

905

885

887

1527

1556

1618

1060

1059 1051

1052

1526

1727

882

1645

899

904

1528

15751771

1668

1548

877875

1075

1061

876

890

1560

1603

1501

1689

1623

1567

1013

1014

895

896

903

1570

16281730

1568

1627 1632

16331697

1549

1611

1542

1543

17141644

1531

1577

1779

1596

1480

1090

1093

1095

1089

1486

1487

1493

1485

1651

1652

1080

1663

1688

1083

1081

1234

1495

1492

1465

1067

1587

1601

1625

1634

1597

1066

1064

1063

1058

1049

1292

1677

1967

1054

1030

1017

1028

1033

1006

1015

1025

1281

1286

1282

1285

1276

1278

1279

1235 1236

1274

1272

1269

1268

1267

1261

1263

1260 1012

1258

1254

1257

1050

1764

1243

1249

1036

1041 1024

1211

1683

1692

1760

1630

16311735

1736

1757

1591

1841

1604

1606

1598

1675

1720

1629

1641

1620

1709

1658

1705

1654

16381640

1624

1637

1667

1673

1682

1691

1791

1798

18151824

1872

1715

1676

1669

1864

1907

1643

1681

1725

1655

1734

1745

1659

16861717

1719

1665

1671

1816

1695

1813

16801698

171017291784

1711

2041

1748

1818

1724

1690

1837

1783

1750

1768 1777

1901

1796

1746

1775

1754

1819

18211733

1723

1752

17221801

1829

20622101

1839 1944

17881789

1858

1860

17551762

1848

1759

1983

1985

2039

2206

1795

1753

1866

1765

1782

1785

1908

1885

1886

1808

1781

1805

1786

1830

1810

1845

1847

1772

1776

1780

1868

1802

2013

2153

18741890

2002

1807

1822

1871

1838

1833 1869

1863

1811

1923

1894

1981

18421956

1952

1881

1928

1932

1962 1861

1903

1940

2108 2109

1852

1873

2037

1974

1854

1835

1955

1963

1865

2066

2106 1843

1982

1879

1880

1887

1937

2225 1867

2081

1883

1898

1912

19411957

2034

1914

1916 1936

1892

1897

192420002009

1915 1971

1909

2049

1902

1954

2031

1910

2263

2027

1976

1919

1920

1987

2020

2023

1978

1934

19861994

2038

1946 1966

19421993

2024

1960

1992

1995

2017

2005

2007

20112053 1953

19772064

2065

19641969

2099

1973

1990 2032

2089

2144

1996

2052

2029

2132

2146

1997

20682082

2015

2008 2080 2176

2079

2164

2218

Out865

2137

2138

20122133

2036 2044

2054

2110

2135

2030

2035

Out421

2199 2057

2186 2055

2223

2083

2127

Out447

2090

2073 2209

2271

20502093

2180

2042

2091

2117

2211 Out389

2060

2123

2192 2196

2167

2078

2070

2234

2229

2230

2076

2169

2103

2085

2074

2173

2175

2120

2140

2191

2155

2105

2152

21302160

2220

2222Out4182262

2200

2131

2139

2233

2126

2124 2248

2270

2254

22562189

Out8802145

2203

2141

2157

Out767

2227

Out866

2143

Out423

2179

2159

2149

2215

2228

2239

Out391

2161

2163

2171 22502272

Out450

21882246

2243

2231

2217

Out768

2216

2241

Out446

2214

2181

2207

Out390

Out863

2257 2197

2235

2219

2236

Out850Out420

2242 2245

2273

Out879 Out448

2274

Out449

2266

2252

2278

2260

Out419

2238

Out388

2276

Out874

Out864

2269

Out878

2259

2280

2282

2268

Out422

2279

Figure A.9: C ′ after applying 400 iterations of OutputLevelTwoGates to ISCAS
benchmark circuit C880 (height= 60 levels, width= 31 gates).

82

In1

280

483

270

276

279269

In8

309

In13 In17

317

323 322

432

443

In26

In29

986

984

285 287

273

290

291

In36

907 296295

In42

284

294

In51

316

In55

427

437

In59

319

442286 293

In68In72

In73

400

In74

In75

In80

In85

297

In86

In87

298

In88

In89

355

In90

886

In91

332 302301 502

In96

333 504

In101

334 304303 506

In106

335 508

In111

336

511306305

In116

338

513

In121

340

515308307

In126

517

In130

519518

499 498

In135

501500

In138

318

In143

510 475

In146

512 477

In149

514 479

In152

In153

516 481

In156

In159

324 325522 590593

In165

523 597

600

In171

327 326524

609

606

In177

525 616 619

In183

328329

526

625628

In189

527

635

632

In195

330 331

528

644

641

In201

529

651

654

In207

521 520

In210

417

In219

794 810 809 808

836

852 851853

In228

748745

742

736

739

754 751759

In237

746 749 740743737760755 752

In246

596 605624 615640 631659650

In255

339 337341

In259In260

In261

734733732

758757In267

In268

310

828

721

1414

1476

1413

860

945

946

1419

1547 1418

1435

861

1164

385

943

1293

1018

1417

1456

949

987

827

712

845

947

1001

1002

826 777

530

552 550

747

796

772

1821

2109

2108

1822

1852

533

551

770

539

565

538

561

537

557

1824

1874

1873

2037

536

553

1829

1974

744

822

771

741

819

349

935

1424

1491

1423

1451

930

994

1046

1426

931

932

964

961952

1156

1222

731

933

998

343

392

963

1429

1444

1463

345

393

346

399

937

347

410

348

540

569

735

849

773

929

1023

769

542

577

541

573

544

585587

543

581

738

815

1810

1842 1956

805

1811

1952

1813

1819

1881

547

586

1815

1838

1816

1928 1932

1962

811

1818

1861 1885

1903

778

1940

782

1437

1706

1767

1737

1533

1436

1468

1579

1592

1434

1622

1433

1432

1511

1430

925

1005

926

923

369 482 480 476478

921

922

1843

1982

1841

1864

727

918

972

722

763761756

1440

839

1847

1879

1880

1848

18872225

1937

1845

1446

1447

1445

1559

1557

1448

14501803

1507

379

382

1441

15731515

1443

1502

1538

375

376

915

910

912

953

9651171 1087

1245

913

1009

1830

1854

669

717

793 792

686

1833

1835

677

713

762753

8381201

1865

1839

2106

2066

1529

15121481

704

1837

1955

1963

696

1022

2110

2164

981

1117

980

1137

1072

9901056

1010

2248

2270

700

788789

2103

2130

2139

2233

837

21012124

708

790791

2105

2152

705

750

2126

977

978

1031

2120

2189

357360

363

971

1185

1004

366

974

975

1039

589

661

2117

2137

2254

2316

2317

2551

588

893891

2133

2472

1601

1629

2132

2223

2131

2141

2157

969

992

968

967

996

1147

1011

966

1008

991

1607

1658

960

1169

1003

1606

1620

1603

1611

1641

16881604

1709

1808

1807

1981

1908

1805

1894

1923

1802

1801

1863

2127

2203

2145

959

1098

1047

2159

958

2144

2228

2143

2149

2284

954

956

1406

1462

2140

2179

1407

1459

1460

1250

1403

1203

1371

1206

1266

1233

1200

1301

1242

1202

1387

1306

1247

2138

2173 2329

2341

2459

1208

1256

1209

2146

2161

2239 23242163

1625

1667

1628

1682

1673

1627

1735

16911798

1791

2171

1640 1638

2153

2250231523392370

2372

1624

1637

2155

2272

2352

1623

21862234

2439

1985

1892

1897

1898

1907

2049

1909

1617

1705

1616

1618

1632

1654

22432160

2246

2231

2217 2167

2169

2533

1644

1725

2175

22292383

1643

1681

2176

2646

1645

1683

1872

1669

2216

2241

2214

806 807 812 813 814

795

804

997

803

2180

2181

1007

1106

1057

1676

1100

1635

1715

1634

1633

2364

1631

1630

2207

2404

1000

1868

2034

781

1867

1957

1869

1914

785

786

787

802

2191

1860

2081

18661883

1671

1912

1941

2192

2257

1662

1672

1663

1665

2197

2196

1668

1695

854

505

1858

868

503

869

509 507

16601652

1655

1651

1734

1745

1659

1686 1717

1719

764 765766

1886

1915

1783

1690

1971

1692

1768

1750

2009

867

1890

1689

1711

1724

1680

1748

1936

1871

1916

20001924

1677

2041

1675

1729 1784

1698

17101697

1195

1217

1197

1378

1192

1193

1219

1577

1714

1757

1736

1190

1574

1760

1575

1188

1238

1186

1184

1183

1182

1180

1338

1587

1591

1730

1590

1179

1230

15961598

1727

1597

1599

1720 1701

1213

1396

1397

1104

1140

1393

1475

1473

1105

1376

1375

1163 1231

1102

1392

1110

1125

1389

1500

1388

1386

1382

1520

1383

1385

1921

1124

1134

1367

1122

1135

1127

1336

1176 12751130

1284

1119

673

670

1111

1259

1113

1115

1114

11181343

121412641316

1399

1467

1121

1120

662 665

841

1350

1368

1148

1150

1162

1146

1265

416 414415

1348

1349

1346

1362

1344

1218

1342

1540

1139

1340

1136

1252

1297

413412

1339

411

1335

1143

1248

1332

1370

1167

1374

15081565

1373

405 406

409408 407

489 488491490

1173

1170

1302

1505

1312 1369

1353

1518

1552

1458

1294

12891157

11591318

1361

1161

1363

350

402

351

1078

352

354

404

1356

1210

1225

1359

1165

2008

825

2017

2054

2007

2011

2005

1319

2002

2044

2036

1313

1323

1326

1310

1498

1788 1789

2209

2211

2062

1944

2363

2012

2089

1722

682

2206

2236

1723

1901

1775

678

2343

2200

2235

2220

2433

2013

2030

1329

1489

14541328

2015

1325

1479

463

426

425

460

2410

2020

2035

424

2023

2348

2356

2382

2218

1752

2300 2303

2304

2333

22452242

2273

2297

834835

829

840 859

1754

495

445

1733

466

697

832 833 492

444

830 831

1300

1504

687692

2038

451

843 842

888

2252

2263

858

848

857

2266

847

846

855

844

2269 2292

2289

2276

2282

2280

2262

2478

2260

2443

2510

862

873 872871

24232430

2464

2601

2756

2762

2274

2308

2367

23752377 2455

881

1043

883

2325

2591

2313

2278

2359

2238

2296

2389

2090

2091

2093

2099

2293

1523

905885

887

1527

1556

1060

1059 1051

1052

1526

882

899

904

1528

1771

17951796

1548

877 875

1075

1061

876

890

1560

2070

1782

2268

2074

2073

1785

2076

1786

2078

2085

2068

2365

2673

2314

1501

2337

1567

1779

2080

2279

2420

2083

1772

2082

1776

1777

1780

2285

2079

1781

1013

1014

895

896

903

2053

1570

1765

1764

2055

2050

2052

1762

1568

2060

2295

1755

2064

2065

1753

1759

2057

2031

2032

2291

1746

1549

1542

2024

2027

1543

2029

2042

2526

2039

1983

1531

2380

1480

1090

1093

1095

1089

1996

1973

1976

1977

1978

1486

1487

1493 1485

1080

1083

1081

1234

1990

1997

1986

1987

1495

1492

1465

1995

1067

1992

1993

1994

2287

2288

1066

1064

1063

1058

1049

1292

1967

1054

1030

1017

1028

1033

1006

1015

1025

1281

1286

1282

1285

1902

1954

1910

1276

1278

1279

12351236

1274

1272

1934

1919

1920

1269

1268

1267

1261

1263

1260

19461966

1012

1258

1254

1257

1960

1942

1050

1243

1249

1036

1041

1969 1964

1953

1024

1211

2373

2405

2319

2357

2321

2332 2387

2409

2489

2335

2318

2360

2362

2527

2724

2368

2411

2453

2454

2440

2442

2531

2398

2330

23952406

24792536

2557

2571

2708

2374

2435

2541

2477

2355

2403

2402

2484

2397

2671

2495

2498

24342651

2713

2566

2598

2448

2414

2486

2415

2588

2456

24182438

2469

2476

2413

2559

2491

2516

2467 2426

25242429

2682

2768

2770

2799

2431

2512

2483

2432

2772

2437

2501

2504

25082911

2471

2712

2496

2522

2563

2465

2468

2735

2630

2474

2755

2778

2475

2487

24992561

2507

2574

2652 2482

2581

2612

26242603

2544

2553

2518 2545

2649

2550

2676

2736 2539

2547

2582

2519

26612506

2509 2511

25292514

2579

2605

2609 2633

26352669

2720

2597

2614 2697

2830

2896

2555

2573

2549

2584

2607

2616

274825542570

2617

2594

2599

2578

2660

2619

2577

2643

2710

2585 2589

2663

26262586

2658

2744

2889

2938

2939

2615

2806

2858

2596

26802693

2613

2602

2666

2684 2608

26672727

2637

2653

2924

2648 2751

2628

2718

2620 2691

2828

2665

2695 2740

2814

2696 2717

2659

2647

2705

2706

2757

2838

2719

2699

2701

2747

2678

2775

2668

2805

2787

2916

2721

2914

2729

2702

2761

27522802

2733

2679

2930

2931

2689

2690

2698

2707

2809

2795

2816

2817

2909

2857

2792

2860

2777 2856

2711

2837

2922

2959

2850

2853

2758

2903

2723

2812

2764

2786

2849 2885

2734

2823

2783

2789

2797

2779

2836

2879

2913

2934

2848

2813

2873

2821

2801

2790

2818

2845

2791

29252950

2955

3050

3051

2864

3095

3097

3245

3263

2881

2882

2983

304830492810

2862

2798

2904

2936

2923

2902

28072833

28972835

2863

3106

28242869

2894

2929

2842

2839

2932

2876

2844

2918

3029

2943 2872

2968

2927

2859

2892

2852 2975 3005

2912

2895

2910

2901

2883

2947

3061

28932900

2880

2956

3027

2906

3022

2972

3018

2944

2919

2921

2926

2907

3007

30162917

2964

3070

3319

33833433 2915

2928

2933

2952

3135

3196

2957

2951

2962

2945

2971

3171

29983012

3057

30823243 3255

2941

2979 3031

2961

3008

2937

2974

2969

2980

3167

30193088

3090

2970

3054

3011

30303204

3001

3002

3077

3105

2986

3055

3091

3136

3155

31573307

3428

3164

3200

3311

2987 3038

3047

29812990

3067

30853114

3278

3015

30782994 3068

30253281

3102

3369

3033

30283034

3187 3271

3276

3113

30363065

3040

3073

3107

3058

3060

3323

3377

33783165

3045

3042 3066

3125

3127

3172

30753076 3104

3081

3109

323032363132

3385

31403296

3094

3206

33153366

3407

31183220

3191

3219

3139

3098

3110

3152

3124

3166

3093

3158

3329

3162

3175

3201 3193

3209 3250

3274

3233

3482

3108

3145

3268

3122

31343128

3149

3161

3213

3270

3146

3143 3160

3173

319433713283 3178 3197

3199

3258

3308

3212

32173249

34173460

3494

3321

3357

3185

3454

3180

3225

3397

3282

3248

3241 3269 3207

3350 3338

3203

3414

3416

3301

3381

3252

3253

3223

3224

3445

3465

3313

32793239

3299

3501

3238

3235

32943406

3363

3340

3341

3384

3244

3266

3265 3489

3280

3286

3411

3256

3303

3339

3260

3335

3291

3540

3310 3360

3354

3284

3285

3275

3434

3503

3314

3374

3353

34083472

3379

3317

3305

3325

3342

3370

3336

3390

3391

33273343

3328

3362

3410

3394

3401

3421

3634

34323331

3355

3447

3544

3458 3539

3439

3440

3398

3373

3530

3359

3427

3389

3510

3423

3375

3532

3548

3550

3562

3476

3524

3564 3566

3591

Out390

3399

3388

3395

3431

3412

3413

3536

3641345234753534

3422

3511

34803671

3672

3676

3438

3448

3512

3425

3418

3453 3456

3426

3514

3506 3568

3571

3617

3462

36553485

Out863

3437

3652

3611

3500

3474

3583 3486 34973574

3597

3502

3623

Out389

3558

3466

3468

3666

3679

3469

3521Out450

3513

3517

3614

3525

3481

3492

3538

3638

3523

3585

3649

3590

3662 3584 36293635

3622

35533569

35373626

3518

3554

3600

3665

3527 3603

3630

Out391

3543

3560

35563637

Out422

3678

Out767

3565

3605

3561

3618

3656Out874

Out419

3573

3541

3632

3633

3659

3661

3657

3610

3594

3596

3682

3616

3690 3691

Out768

3647

3675

3608 3588

3589

3619

Out447

3636

3593

36503687

Out864

3644

3607

3642

Out388

Out449

3615

3663

3627

3621

Out850

Out420

3683

3680

Out8803673

3670

Out423

3668

3692

3689

3694

3695

Out421

3685

Out865

Out878

3686

Out879 3684

Out866

Out446

Out418

3693

Out448

Figure A.10: C ′ after applying an additional 800 iterations of
OutputLevelTwoGates to the circuit C ′ in Figure A.9 (height= 98 levels,
width= 33 gates).

83

Bibliography

1. Barak, Boaz, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. “On the (Im)possibility of obfuscating programs”.
Electronic Colloquium on Computational Complextiy, 8(57):1–41, 2001.

2. “Benchmark circuits”. Internet: http://www.fm.vslib.cz/∼kes/asic/iscas/,
Jan 2007.

3. Collberg, Christian, Clark Thomborson, and Douglas Low. A Taxonomy of Obfus-
cating Transformations. Technical Report 148, University of Auckland, Jul 1997.
URL http://www.cs.arizona.edu/∼collberg/Research/Publications/.

4. Edwards, Stephen A. “Making cyclic circuits acyclic”. DAC ’03: Proceedings of
the 40th conference on Design automation, 159–162. ACM, New York, NY, USA,
2003. ISBN 1-58113-688-9.

5. Garey, M. R. and D. S. Johnson. Computers and Intractability : A Guide to the
Theory of NP-Completeness. W. H. Freeman, January 1979. ISBN 0-716-71045-5.

6. Goldwasser, Shafi and Guy N. Rothblum. “On Best-Possible Obfuscation”. 4th
Theory of Cryptography Conference, volume 4392 of Lecture Notes in Computer
Science, 194–213. Springer, 21-24 February 2007. ISBN 3-540-70935-5.

7. Gross, Jonathan L. and Jay Yellen. Graph Theory and its Applications. Chapman
& Hall/CRC, 2 edition, 2006. ISBN 1-58488-505-X.

8. Hansen, Mark C., Hakan Yalcin, and John P. Hayes. “Unveiling the ISCAS-85
Benchmarks: A Case Study in Reverse Engineering”. IEEE Des. Test, 16(3):72–
80, 1999. ISSN 0740-7475.

9. Huth, Michael and Mark Ryan. Logic in computer science: Modelling and Rea-
soning about Systems. Cambridge University Press, 2004.

10. James, Moses C. Obfuscation Framework Based on Functionally Equivalent Com-
binatorial Logic Families. Master’s thesis, Air Force Institute of Technology,
WPAFB, OH, March 2008.

11. Kukis, Mark and Katherine Arms. “Bush to China: Return Plane, Crew”.
Internet: http://www.military.com/Content/MoreContent1?file=standoff,
April 2001.

12. McDonald, Jeffrey T. Enhanced Security for Mobile Agent Systems. Ph.D. thesis,
Florida State University, 2006.

13. Mish, Frederick C. (editor). Merriam-Webster’s collegiate dictionary. Merriam-
Webster, Incorporated, Springfield, MA, 10 edition, 2001. ISBN 0-87779-710-2.

14. Naveh, Barak. “JGraphT”. Internet: http://jgrapht.sourceforge.net/, Jan-
uary 2008.

84

http://www.fm.vslib.cz/~kes/asic/iscas/�
http://www.cs.arizona.edu/~collberg/Research/Publications/�
http://www.military.com/Content/MoreContent1?file=standoff�
http://jgrapht.sourceforge.net/�

15. “PreEmptive Solutions”. Internet: http://www.preemptive.com/, Jan 2008.

16. “Semantic Designs, Inc.” Internet:
http://www.semdesigns.com/Products/Obfuscators/, Jan 2008.

17. “Smardec”. Internet: http://www.smardec.com/products.html, Jan 2008.

18. Varnovsky, Nikolay P. and Vladimir A. Zakharov. “On the Possibility of Provably
Secure Obfuscating Programs.” Manfred Broy and Alexandre V. Zamulin (edi-
tors), Ershov Memorial Conference, volume 2890 of Lecture Notes in Computer
Science, 91–102. Springer, 2003. ISBN 3-540-20813-5.

19. “Wiktionary”. Internet: http://en.wiktionary.org/, Oct 2007.

85

http://www.preemptive.com/�
http://www.semdesigns.com/Products/Obfuscators/�
http://www.smardec.com/products.html�
http://en.wiktionary.org/�

Vita

Major Kenneth E. Norman graduated from Fayette County High School in

Fayetteville, Georgia. He entered undergraduate studies at the Georgia Institute of

Technology in Atlanta, Georgia where he graduated with a Bachelor degree in Elec-

trical Engineering in 1992. He was commissioned through Officer Training School in

1993. In 2002, he earned his first Masters degree in Engineering Management at the

Florida Institute of Technology.

Major Norman was first assigned to HQ Standard Systems Group, Maxwell

AFB, Alabama in July 1993 as officer in charge of software development. In Octo-

ber 1996, he was assigned to the National Air Intelligence Center, Wright-Patterson

AFB, Ohio where he served as an intelligence analyst. His third assignment began in

October 1999 when he was selected to stand up a new joint interoperability program

office at the US Army’s Communications-Electronics Command, Fort Monmouth,

New Jersey. Next, he became an assignment officer for the developmental engineer

career field at HQ Air Force Personnel Center, Randolph AFB, Texas in July 2002.

Maj Norman was next assigned to the National Reconnaissance Office in Chantilly,

Virginia in August 2004 as a systems engineer. While there, he was selected for in-

residence Intermediate Developmental Education, which precipitated his assignment

to attend the Air Force Institute of Technology in August 2006. Upon graduation,

he will remain at Wright-Patterson AFB for his assignment to Air Force Research

Laboratory.

Permanent address: Air Force Institute of Technology
2950 Hobson Way
Wright-Patterson AFB, OH 45433-7765

86

Index

The index is conceptual and does not designate every occurrence of a key-
word. Page numbers in bold represent concept definition or introduction.

acyclic graph, 17

black-box obfuscation, 8

circuit class, 13

CORGI, 20

CXL, 20

digraph, see directed graph

directed acyclic graph, 17

directed graph, 15

graph, 15

multi-graph, 17

Random Program Model, 8

RPM, see Random Program Model

subcircuit replacement, 18

subcircuit selection, 18

VBB, see virtual black box

virtual black box, 4

white-box obfuscation, 8

Index-1

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27-03-2008 Master’s Thesis Sep 2006–Mar 2008

Algorithms for White-box Obfuscation Using
Randomized Subcircuit Selection and Replacement

08-183

Norman, Kenneth E., Maj, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/08-17

Air Force Office of Scientific Research
801 North Randolph Street, Rm 732
Arlington VA 22203-1977
703–696–9544 (DSN: 426)

Approval for public release; distribution is unlimited.

Software protection remains an active research area with the goal of preventing adversarial software exploitation such as reverse engineering, tampering,
and piracy. Heuristic obfuscation techniques lack strong theoretical underpinnings while current theoretical research highlights the impossibility of creating
general, efficient, and information theoretically secure obfuscators.

In this research, we consider a bridge between these two worlds by examining obfuscators based on the Random Program Model (RPM). Such a model
envisions the use of program encryption techniques which change the black-box (semantic) and white-box (structural) representations of underlying programs.
In this thesis we explore the possibilities for white-box transformation. Under an RPM formulation, if an adversary cannot distinguish an original program
from either its obfuscated version (whose black-box behavior has been strategically altered) or a randomly generated program of comparable size, then the
white-box intent of the original program has been sufficiently protected. One proposed method of creating such random indistinguishability is by choosing (at
random) a program from a size-bounded set of all semantically equivalent possibilities.

Since full enumeration of reasonably sized programs is not possible, in this work we focus on obfuscators which introduce random white-box structural
variation based on iterative selection and replacement. We design and develop an obfuscation framework for programmatic logic expressed as combinatorial
Boolean circuits and compare six unique approaches for sub-circuit selection. We analyze the relative behavior of random and guided-random sub-circuit
selection algorithms while showing their utility in producing random white-box structural variation.

software tools, software engineering, computer programs, cryptography, obscuration, software obfuscation, randomization,
pseudo random sequences, random functions

U U U UU 99

Lt Col J. Todd McDonald

937–255–3636 x4639, jmcdonal@afit.edu

